

The WombatDialer User Manual
Loway SA

Version 21.06, 2021/06/01

Table of Contents
What is WombatDialer? . 2

Why was WombatDialer created? . 2

Key features. 3

Typical usage scenarios . 3

Getting started with WombatDialer . 5

Install WombatDialer . 5

Set up WombatDialer . 7

Create a list of numbers to be called . 8

Create a new campaign. 9

Create reschedule rules . 10

Run your first campaign . 10

Run a report on your campaign . 12

Where to go from here . 14

WombatDialer Concepts . 15

The architecture of WombatDialer . 15

Asterisk servers . 15

Trunks. 18

End-points . 20

Call lists and call records . 25

Campaigns . 26

AMD & Fax detection. 36

Campaign runs . 37

Opening Hours . 42

Opening Hours Inspector . 44

Call logs. 45

Users and security . 46

Running WombatDialer . 50

Understanding the GUI . 50

Controlling the dialer . 51

The Live page . 53

The Copy Campaigns Panel . 60

The Dialer State Page . 61

Running campaign reports . 63

Importing and exporting call lists . 67

The License page . 70

QueueMetrics integration. 73

Installation. 73

Understanding QueueMetrics integration . 73

Real-time monitoring . 75

Reporting . 75

Using the agent’s page. 75

A WombatDialer Cookbook . 78

A social media dialer. 79

Helping Wombats one carrot at a time. 83

Outbound IVRs and dr. Strangelove . 86

Understanding queue end-points. 93

A custom QueueMetrics integration . 95

Elastix queue call-backs . 100

Automated recall of lost inbound calls . 103

Preview dialing with QueueMetrics . 107

Effective answering-machine detection. 110

Administering WombatDialer . 113

Installing . 113

Upgrading . 117

Starting and stopping . 118

Backing up . 119

Logs and logging . 119

Monitoring a running instance . 120

Troubleshooting a running instance. 125

API reference. 130

Controlling Asterisk from WD . 130

Controlling WD from Asterisk . 130

Controlling WD over HTTP . 132

The JSON configuration API . 151

The JSON Live and Reporting API . 157

HTTP/S life-cycle notifications of calls . 164

System configuration. 166

Security keys . 166

Default users . 166

For more information… . 167

1

What is WombatDialer?
WombatDialer is a new-generation mass outbound calling platform for the Asterisk PBX.

It can be used to implement many different services. By offering a set of ready-to-use components
and a monitoring GUI, you can create complex solutions in minutes.

WombatDialer can work on pre-defined call lists or can dynamically create them over an API (e.g.
dial number X after 10:30 AM). It shares the load on one or more PBX servers and has a flexible
rescheduling logic to handle missed calls. It is built to be used with your existing Asterisk PBX and
does not require separate servers or a separate set of lines. It can call over VoIP or through the
public telephone network.

WombatDialer is built to integrate with your business processes, can receive calls to be made over
HTTP and/or notify an external system in real-time about calls made and results gathered.

WombatDialer works natively with the QueueMetrics Call-Center Monitoring Suite in order to
produce state-of-the-art campaign analyses and insight.

Why was WombatDialer created?
If you are an Asterisk integrator, it may have happened to you: one of your clients requires simple
outbound capabilities, e.g. calling back a customer who filled in a recall form on their website.
Simple enough.

You start by creating an Asterisk callfile to generate each call - it works nicely and it is easy to set
up, but if the call does not complete then it is lost. So you have to create a process that keeps track
of the call and retries it in time. And that’s not an easy feat to pull off when starting from a callfile.

The first thing your client notices is that calls end up using an unpredictable amount of lines - as
they basically have an office PBX, people cannot dial in because at peak times your script is
saturating all outgoing channels. Management is not happy and you have to keep track of trunk
usage - not only your own, but your client’s as well.

Then your client notices that those calls should not be made outside business hours - a customer
might require a call at night, but there must be someone at their offices in order to call back. So you
have to implement a calendar in your custom application.

Now that you have the calendar, your client notices that calls are generated at inconvenient times -
sometimes all of their service reps are sitting idle, and other times they are all busy and calls keep
piling up. So you have to edit your scripts to keep track of the current end-point statuses and decide
when it is a good time to call.

Just at this point, they start to saturate their existing PBX, so they need to set up a cluster of boxes
and they want your application to handle this. And while you are at it, what about usage statistics?
and why not running different outbound services at once? and did they tell you they need to
integrate their existing CRM? and could you add predictive capabilities to the set? and….

It looks like a nightmare. And it actually is - been there, done that. That’s why WombatDialer was

2

created: all common outbound logic should be encapsulated through a declarative interface. No
need to reinvent the wheel. You program the dialplan to be executed - either manually or through a
GUI - and WombatDialer takes care of the rest. You create scripts if you need to send and receive
data from WombatDialer, and you can control it all through a simple HTTP interface.

How much time is this going to save you?

Key features
• "Just Works" with your existing Asterisk PBX

• Easy, automated installation

• High scalability: from one to hundreds of outbound lines on multiple servers

• Run multiple prioritized campaigns in parallel

• Different dialing modes - automated, reverse and preview

• Pervasive security model with extensive auditing capabilities

• Programmable handling of calls that do not complete

• Easy to integrate through its HTTP API

• Strong real-time monitoring capabilities

• Runs locally - you do not have to depend on third-party services

• Provides a set of "building blocks" so you can create custom-tailored solutions

Typical usage scenarios

Telecasting

Send a pre-recorded message to a set of receivers. The message can be easily customized by having
your PBX read custom variables, e.g. current account balances, planned service outages, end of
current subscription periods. Works with your existing PBX.

• Automated warning systems (e.g school alerts)

• Event cancellations

• Number verification services

Telemarketing

Send a pre-recorded message to a list of contacts, and offer them an option to be put in contact with
an operator if interested. When required, a maximum call duration can be enforced.

• Appointment reminders and cancellations for physicians, dentists, etc.

• Track subscription expirations and process renewals

• Product offerings

• Debt tracking and collection

3

Voice conferencing

Ever tried setting up a conference call with many attendants? WombatDialer can connect them all
in parallel at the click of a button - no more wasted time and manually dialing busy numbers.

• Connect tens or hundreds of parties at once

• Different parties can have different access levels, e.g some may speak and some may only listen

• Virtual town hall

Automated phone interviews

Connect to a group of receivers and offer them a set of IVR options (reverse IVR). WombatDialer
keeps track of selected options and forwards them to your tracking system.

• Automated service satisfaction interviews

• Quality Assessment of your services

• Instant automated polling stations

4

Getting started with WombatDialer
Using WombatDialer is easy once you get the hang of how it works. In order to work profitably with
it, there are a few prerequisites that you should be aware of:

• WombatDialer drives one or more Asterisk PBX’s and uses them to place calls. You should have
the logins and passwords of the AMI interface for these PBXs.

• You must know the names of the trunks WombatDialer will use - they depend on the local setup.
E.g. SIP/myprovider/123456 or DAHDI/g0/123456 might be valid formats to dial the number 123456.

• When a call is started, WombatDialer directs it to some place in the Asterisk dialplan in order to
be processed. So you should have a general idea of how to program your Asterisk PBX in order
to execute the functionality you’re after - e.g. playing a broadcast message, recording an audio
message, setting up an inbound queue. You should know where in the dialplan these actions will
happen, in terms of extension and context as used by Asterisk.

In the following example, we will show you one of the simplest things you can do with
WombatDialer - that is, setting up a Direct Campaign and calling a list of numbers. All numbers will
be called in sequence; if any of them cannot connect, then it will be retried.

To make life easier, we will run the following example by using the free 2-channel demo key that is
embedded in WombatDialer. You may want to test more complex scenarios by getting a free demo
key from our website in order to test-drive WombatDialer thoroughly.

We are going to be using FreePBX in this example and assuming that the PBX is already up and
running; having queues and extensions already configured.

This is our battle plan:

• Install WombatDialer

• Set up WombatDialer

• Create a list of numbers to be called

• Create a new campaign

• Create reschedule rules for our campaign

• Run your first campaign

• Run a report on the campaign

Install WombatDialer
We will be installing the dialer on the same box as your PBX is. Please note that WombatDialer is
NOT meant to be installed on an internet-accessible system.

Installation is very easy; on an FreePBX box it is enough to login as root and enter the following
commands:

5

wget https://yum.loway.ch/loway.repo -O /etc/yum.repos.d/loway.repo
yum install wombat

A number of packages will be selected and installed on your local system. This may take a while.

When done, go to http://serveraddress:8080/wombat and follow the instructions to create the
database.

When done, login as demoadmin password demo by clicking on the Users icon on the top-right.

If all goes well, you should be presented a screenshot like the following one:

6

http://serveraddress:8080/wombat

Set up WombatDialer
Inside WombatDialer; after logging in, click on "Edit basic settings" and add a new Asterisk Server
like:

• Server description: MyPBX

• Server Type: Asterisk AMI

• Address: 127.0.0.1

• AMI port: 5038

• Login: cxpanel

• Password: cxmanager*con

Near the "Server Type" you will find a "plug" icon. Use this button to test the AMI
connection with your PBX.

in this example, we use the default AMI user for FreePBX - it would be generally
better to create a new user specifically for WD.

Now we create a new trunk. This will be used to dial numbers out. We might be using a SIP trunk, a
local channel or whatever suits you. For the moment we use the default format used by FreePBX, so
that numbers will be composed as if they were dialed on a local extension.

• Asterisk server: MyPBX

• Trunk name: MyTrunk

• Dial string: Local/${num}@from-internal/n

• Capacity: 10

7

 Near the "Dial string" you will find a "plug" icon. Use this button to test the Trunk.

Now we create an end-point, that is a destination for calls that are successfully answered. In our
example the EndPoint will be a queue where extension 201 is waiting to be connected with the
customer.

• On server: MyPBX

• EP Type: Queue

• Description: My End-Point

• Max Channels: 10

• Located at [extension]: 999

• Located at [context]: from-internal

• Queue name: 999

Near the "Located at [extension]" you will find a "plug" icon. Use this button to test
the context that you are using.

By the end of the configuration, your page should look like the following one:

Create a list of numbers to be called
Now go back to the main page, click on "Edit lists" and create a new list called "TestList". The list has
no settings, just a name.

Select the list just created on the left and then press "+" on the "Numbers for list" control. From here

8

we add numbers - you may enter any numbers you want, as well as Attributes.

You may want to add local extensions and remote channels - WD will work just fine. In our
example, we added a local extension and a non-existent local extension, in order to display what
WD does when a number cannot complete.

For real-life usage, you may prepare a CSV file with your favorite spreadsheet and upload
thousands of numbers at once.

Create a new campaign
Let’s go back to the home page and click on "Edit Campaigns"

Add a new campaign by setting the following parameters:

• name: TestCampaign

• status: RUNNABLE

Then save it and select it; add the trunk, the end-point and the list you just created.

It is important to notice that, once you add a trunk or an end-point to your campaign, to change it
with another one you need to add the new one and then remove the old one using the edit panel
(the pencil icon). If you’re adding lists or reschedule rules instead, you can change them directly by
selecting a new rule or list in the edit panel.

At the end of the configuration the campaign will look like:

9

Campaigns have many options you can set to control their behavior - for example, you can set a
caller-id, or the time period they are supposed to be active it, or how their results should be logged
and notified. A detailed description is available on the Campaigns chapter.

Create reschedule rules
While the campaign is selected, take a second to add reschedule rules. Basically they tell WD what
to do in case a call does not go through. You will typically want to handle at least the following
cases:

• RS_REJECTED: the network could not place the call

• RS_BUSY: the number dialed is currently busy

• RS_NOANSWER: the number dialed does not answer

For each case, add a new reschedule rule. Just enter a time in seconds after which the call is to be
redialed, and a maximum number of retries.

You would expect to have something similar to the following example:

Note that, for each rule, you may have a different retry delay and a maximum number of retry
attempts that is different based on the status encountered.

A detailed explanation of completion codes and how reschedule rules interact can be found at
Reschedule Rules.

Run your first campaign
Now go back to the home page and start the dialer by clicking on the "Play" icon under "Dialer
status". After a few seconds, click on the "Refresh" icon to confirm WD is up and running:

10

If you want to see what the dialer is doing without manually reloading, you may want to tick the
box close to the Reload icon to enable automatic refresh.

Click on the "View Live" page. From the "Available Campaigns" box, select your new campaign and
run it by clicking on the "Start" button by the bottom of the page:

While the campaign is running, you will see WD dialing calls. Please note that while WD is running,
your PBX can be used normally. The same campaign can be run only once - you cannot start it
anymore when it’s running, but you will be able to run it again when it finishes.

11

If you select the running campaign from "Running Campaigns", you will see its completion statistics
and expected termination time (as soon as it has completed enough calls to provide an estimate).

You can also click on a live call to see its details.

When the campaign completes, its run is placed in the "Recently closed" section and you are able to
start it again.

Run a report on your campaign
From the home page, click on "Campaign reports". Click on "TestCampaign" and make sure your run
is selected. Then press ">>>".

12

You will see statistics about the runs included, trunk usage and status codes; and details for every
attempt made.

If you want, from here you can create a new list that only contains calls for which the final status
was not successful. Click on "Export to new list", select the runs you are interested in and the final
statuses you want to include, and enter a name for your new list.

13

This way you can save calls to be retried at a later date.

Where to go from here
This manual provides a detailed description of the concepts involved in WD and how it is run and
administered, plus a complete API reference.

Of particular interest can be the section named "WombatDialer Cookbook" that includes a number
of recipes that cover different real-world scenarios and show common usage patterns.

14

WombatDialer Concepts
In order to work profitably with WombatDialer, it is necessary to understand the core concepts that
come into play.

The architecture of WombatDialer
WombatDialer is a complex system that is built out of different subsystems. Understanding which
ones they are and what they are for will make understanding the whole product easier.

As a first thing, WombatDialer can be accessed through its GUI Client (in order to configure it, view
what it is doing and run reports) or through APIs (see the HTTP API section). APIs are meant for
external programs to control the behavior of the dialer, e.g. by controlling runs, adding new
numbers to dial and creating new campaigns.

The dialer itself is controlled by the GUI Server - this way you can start and stop the dialer process
from the GUI. When the dialer runs, an associated watchdog process runs - if the dialer process is
to terminate for an unexpected error, the watchdog is supposed to log the error on the system log
and restart it. As the dialer is able to sync to the state of an external PBX, during the restart phase
calls might not be placed for a few seconds but existing calls will be preserved and tracked
correctly.

When the dialer is running, it creates separate AMI handlers for each Asterisk PBX. Each of them
runs as a separate thread and connects to a PBX through its Asterisk Manager Interface (AMI). If a
PBX crashes, the rest of the system keeps on working; and if one PBX is delayed or loses connection,
this does not impact other PBXs. In case of errors, each AMI handler will automatically retry until a
connection is established.

The dialer also spawns a helper thread that is meant to run long operations, e.g. HTTP
notifications (see the HTTP Notifications section), without delaying the main dialer.

Both the dialer and the GUI use a persistence layer that reads and writes to the MySQL database
used for long-term persistence and log tracking.

Asterisk servers
WombatDialer can control activities on multiple Asterisk servers at once. It does so by keeping a
control channel open with each server through its Asterisk Manager Interface (AMI for short). Each

15

server is managed independently and in case of failure does not stop the rest of WD from running.
Servers can be on the same network as WD is, or can be in remote locations.

When editing an Asterisk server, the following information is required:

• Server description: the name that this server will appear under in WD

• Server type: for an Asterisk system, select "Asterisk AMI". If running a test, you can select "Fake
AMI" - see Fake AMI servers.

• Close to the Server type, there is the Test Connection icon button. It will try connecting to the
currently server with the credentials you entered.

• Server address: the PBX server’s name or IP address

• AMI port: the port that Asterisk’s AMI interface uses. Default 5038.

• Login and Password: the login and password for the AMI user

• Unit length and Max msg per unit: these settings work as congestion control on the AMI port.
WD displays the total maximum number of messages per second.

• Security key is the key that will protect this resource. Leave blank if not needed.

How congestion control works

In order to avoid flooding the PBX with too many messages at once, WD uses the concept of Time
Unit; this is a period of time in which no more than a fixed number of messages can be sent.

For example, using the default values, if WD has to start 100 calls at once, it will send no more than
5 requests to Asterisk every 50 ms, and will queue the rest for the next time unit. This still amounts
to a respectable rate of about 100 messages per second! (though multiple messages are needed to
track a call’s life-cycle).

The difference is hardly ever noticeable from a human point of view, but sometimes the PBX might
crash if it receives too many requests at once. If your PBX runs on low-end hardware, you may
want to reduce the number of messages per unit; on the other side, if your PBX is on a high-end

16

server, you may want to increase it. In general the defaults work fine in the majority of cases.

Do I have to configure Asterisk to work with WombatDialer?

You need to tell Asterisk that WD is allowed to connect and send commands. Our suggestion is to
have a dedicated AMI user on each machine - so it is easier to keep track of which applications are
connected to the PBX at a given time. To use Asterisk, make sure your server type is set to "Asterisk
AMI".

You could e.g. have a stanza in your /etc/asterisk/manager.conf file like the following one:

[wombat]
secret = dials
read = all
write = all

Even in high load conditions, it is safe to run WD with events "all", as it will automatically manage
the set of events that Asterisk is to send it in order to avoid overloading the channel.

What is the Asterisk status?

When WD is running, it will display the current Asterisk status - if a successful connection is
possible, then the Asterisk instance will be UP, otherwise it will be DOWN and WD will simply retry
after a few seconds.

The current Asterisk status is propagated to the entities that belong to that instance - that is, its
trunks, end-points and queues. If there are calls being processed while an Asterisk system becomes
unreachable, WD will try and reconcile them to the current status as soon as the system comes back
up. This should work even if WD is restarted in the meantime.

What is a "Fake AMI" server?

A "Fake AMI" server is a test server that can be used for load testing/integration testing, without the
need of a physical PBX to connect to. It will simulate people answering the phone (or not answering
it) - so it’s a handy way to check if your environment is working or simulate an externally-driven
campaign without actually making those calls. Or if you want to check how a WD instance behaves
when connected to 5 separate Asterisk servers, without actually setting them up.

It will:

• try and answer 50% of the calls

• pick up calls between 1 and 3 seconds

• have calls open between 3 and 6 seconds

This ensures that the campaign will generate way more calls per second than your average "real"
campaign.

When using Fake AMI, the settings for Server, Port and Login/Password are ignored (though they

17

must still be entered).

Connection tests for Fake AMI always pass.

At the moment, the Fake AMI server does not support queue end-points; so it will
not try simulating queues and will not send events for them.

Trunks
A trunk is a set of lines that are addressed as a single logical entity. They can be a set of physical
lines (like a DAHDI interface in Asterisk) or a set of logical lines (like a connection to your SIP
provider, or to another PBX). It may be one single line as well if nothing else is available!

• Asterisk server: is the name of the PBX on which this trunk is located

• Name: is a logical name for the trunk to appear in WD

• Dial string: is the actual Asterisk channel name that WD will invoke (see below).

• Close to the Dial string, there is the Test Connection icon button (see below).

• Capacity: is the number of parallel calls that WD can dial. Make sure you do not exceed the
trunk’s physical capacity!

• Max calls per period (number) and Period length (milliseconds): the maximum CPS rate
limiter (see below).

• Security key is the key that will protect this resource. Leave blank if not needed.

You do not need to define all the trunks that are on your PBX, or to define them to their full
capacity. For example, if you have a 15-channel E1 to your telco, you might define the trunk in WD
as being a 10-channel one, so that you can use the rest with your PBX without any special rule.

It is also perfectly legal to define a physical trunk multiple times, splitting its capacity: again in the
example you have a 15-channel trunk, you might define it as two trunks in WD, one having 10
channels and another having 5. Then you can assign each (or even both) to campaigns to control
the maximum number of parallel outgoing calls.

18

A note on the dial string: it must be a valid Asterisk channel name, and the string ${num} is
replaced with the actual number being dialed. So the following ones are valid examples:

• DAHDI/g0/0${num} - dial the number through group 0 of your PSTN interface, prepending the
digit zero

• SIP/myprovider/${num} - dial the number through the SIP server myprovider defined in sip.conf

• Local/${num}@from-internal/n - dial the number as if was input on an local extension when
using a popular Asterisk GUI

When using channels of type Local, Asterisk will sometimes change them during
the call, so that Wombat may lose them. Though WD is able to keep track of calls
through multiple masquerades and channel renames, if all else fails, you may
want to add a trailing /n to your Local channels to make sure that their channel
names are not renamed.

Testing a trunk

The Test connection button on the trunk allows you to check your trunk. In order to do this, WD
first makes sure that there is a working Asterisk connection, and then tries dialing a channel on the
trunk using a number that you supply. If all goes well, the number is called and a whistling
"milliwatt" sound is played.

The test shows a "success" icon if the call is answered within 30 seconds.

For example, if your trunk is set with a channel format of "SIP/provider/${num}\"
and you enter the number "5551234", WD will try dialing the channel
"SIP/provider/5551234". Make sure your number is in a format that your provider
accepts.

Limiting maximum CPS (calls per second)

A trunk allows fine control on its maximum numbers of calls per second. Many providers limit the
maximum number of originates per second, usually to something like 25 or 30 (but it depends on
your provider and the kind of contract you have with them). Providers often blacklist accounts that
dial too fast, so if you exceed their allowed CPS rate all calls will end up as REJECTED or BUSY as
soon as they are dialed.

As a trunk typically matches one specific outbound route, they usually map to a specific customer
account for the provider that in turn would be used as their unit of measuring your originate rate.

As this check is enforced per trunk, if you have multiple campaigns sharing a
trunk, no campaign can dial faster than the combined CPS; while if you have a
campaign with two separate trunks, the maximum CPS will be the sum of each
trunk’s own CPS.

In order to implement CPS limiting, what happens is that when Wombat inquires for the number of
empty channels on a Trunk, the Trunk will keep track of the number of calls just placed within the

19

last time period, so if the trunk has (say) 50 channels free, but in the last second 10 calls have been
requested and the maximum CPS is 30, it will report back that it has only 30-10 = 20 channels free.

Rate limiting is expressed in terms of a maximum number of calls per a specific period in
milliseconds. When a new trunk is created, its default is 100 calls per 1000 ms, that is a value high
enough to mean "no CPS limits" for most scenarios.

Using a lower CPS limit does not usually affect so much the speed of your campaigns in real-life, as
WD will only effectively "spread out" the calls to be dialed over a few seconds. If you are concerned
about this, you can see its current impact by monitoring how often the status LIMITED BY TRUNK
RATE appears on the running campaign in the Dialer State page.

Calls that end up on a blacklist are evaluated before they are scheduled on a trunk, so rate limiting
is not influenced by the rate of black-listed calls.

Rate limiting is mostly useful if you have a number of channels that is bigger than
your maximum CPS.

End-points
An end-point is where a call goes after being answered on the trunk.

• Server: is the Asterisk server the EP is on

• Description: a free name that the EP will appear as

20

• EP Type: it can be QUEUE (if it is an Asterisk queue - see below), API or PHONE in all other
cases.

• Max channels: the maximum number of parallel calls to be handled by this EP.

• Located at Extension and Context: the location in the Asterisk dialplan where the EP can be
reached.

• Close to the Extension, there is the Test Connection icon button (see below).

• Security key is the key that will protect this resource. Leave blank if not needed.

WD will try and connect answered calls from trunks to end-points on the same Asterisk server. If a
campaign has multiple end-points, it will try to connect any EP that has free capacity.

An end point of type PHONE could be:

• a dial-plan script that plays a recorded message

• a physical phone given to an agent (set max channels to 1 to receive one call after the other)

• an IVR script

• a conference call

• anything that can be programmed in Asterisk!

WD assumes that Trunks and EPs are always usable to their declared capacity, so it
will try to fill them in as soon as possible (within allowed CPS limits). If they are to
be shared, make sure you have enough capacity for WD plus other resources that
may be using them. If you exceed their physical capabilities, you may experience
REJECTED calls or a degradation of speech quality for VoIP. Beware!

Queue end-points

As a special case, it is possible to have EPs of type QUEUE. They are used to distribute calls on a set
of agents that are members of a queue. WD will try and observe the queue, in order to determine:

• how many agents are logged on to the queue

• how many of them are currently available, that is, neither in conversation nor paused

• how many calls are currently queued without being answered

The difference between the number of available agents and the number of calls queued is taken as
the current capacity of the queue. This value is computed in real-time, so the EP will immediately
respond to changes in state to its agent set and to calls queued.

Please note that you can use a single queue both for inbound and outbound activity: if the number
of free agents exceeds the number of queued calls, WD will try and fill-in the rest. This makes it
easy to implement small blended (inbound/outbound) call-centers.

If the number of free agents is below the number of calls waiting, WD will not place any call and
will wait until there are free slots on the queue. This way:

• calls are in general distributed to agents as soon as they are queued

21

• if the number of available agents is not enough to serve calls at once (e.g because some logged
off, or pause in the meantime) then calls are queued and picked up by available agents when
they become free.

Queue EPs have a few additional parameters that control their behavior:

• Queue Name: The exact name of the Asterisk queue being used

• Boost factor: as most of the calls in a campaign are going to be unanswered, it is often effective
to have WD place a number of calls that is a multiple of available agents. For example, if you
have a boost factor of 1.5 and 4 available agents, it will try and place 6 calls at once. If more calls
are completed successfully than the available agents, the remaining calls are held waiting on
the queue. The boost factor is applied only on the number of calls that should be made to
saturate agents that do not have a call currently in progress for them. Please note that the boost
factor can then be managed on running campaign from the Live page, so you can tweak it
dynamically as needed - see Boost factor on the Live page - or you can have WD manage it for
you based on current traffic conditions - see Adaptive boosting

• Max waiting calls: if there are more than this number of calls waiting on the queue, then stop
making calls. The number of waiting calls is computed as the number of available channels on
the queue minus the numbers of calls currently waiting, as Asterisk will report a call to be
waiting even when it’s being connected. In theory there should never be calls queued, as they
follow the number of available agents, but it is possible that either some agent logs off after
being counted or some calls reach a queue without passing through WD. This also acts as a
counterweight to high "boost factor" values, to avoid having too large a backlog of calls to
process if we are having a "lucky streak" in terms of calls answered.

• Reverse dialing: check to make this EP use Reverse dialing (see below for "Dialing mode")

• Manual Preview: check to use Preview mode (only valid in Reverse mode)

• Find and Replace: sometimes - notably on FreePBX systems - agents that are on a queue cannot
be dialed directly, and therefore do not work in Reverse Dialing mode. You find that your queue
has agents in the format Local/4851@from-queue but what you would like to do is to dial
Local/4851@from-internal instead. By setting @from-queue as the Find item and @from-internal
as the Replace item, you can easily obtain this result.

In addition to these parameters, the maximum capacity of the EPs is used - so if you have a queue
with 100 agents but you set the EPs capacity to 10, WD will never use more than 10 lines on this EP
at once.

General Asterisk tips for using Queue endpoints

In order to use WD effectively with a queue, the following guidelines are best followed:

• Though WD works with static member channels, if you want your calls to go through to agents
who may or may not be available (e.g. some days they may be sick) it is strongly advisable to use
dynamic agents who log on and off from the queue.

• As an agent cannot be physically available at all times during the day, it is important that they
have a way to pause themselves, be it to run "wrap up" activities after calls or to take breaks.
The QueueMetrics web interface offers an excellent panel that lets you add pause codes as well.

22

• The queue must provide informational "events" about agent activities. On Asterisk 12+ this
happens automatically, but on older versions it must be enabled by explicitly setting
eventswhencalled=true and eventmemberstatus=true. It is also important that extension presence
is correctly observed - e.g. if an end-point is busy because the agent is making a personal call, its
queue status should immediately reflect this. Whether this happens or not on your system is a
matter of Asterisk version and type of channel that is used to reach the agent - with recent
versions of Asterisk and SIP channels this should work automatically. You can make sure this is
working correctly by observing the queue status as described in Controlling the Dialer

• The queue should connect calls to agent as efficiently as possible when there are multiple calls
waiting and multiple available agents, so it should have the "auto-fill" option set to true.

• Do not use the queue wrap-up feature. As Asterisk does not publish wrap-up events though the
AMI interface, WD sees the agent as "idle" and tries routing calls to paused agents.

API-driven queue end-points

An API driven end-point behaves exactly like a Queue end-point, but will not actively monitor the
queue located on its Asterisk server; in fact, it will use the queue name as a simple placeholder, and
will wait for you to update its status through a periodical API call (see API documentation). Like
every other queue end-point, you can see it in real-time - and check that your API updates are
working - from the Dialer State page.

Why would you want to use something like this? for example, because you have WD use a server to
dial out, but then you trunk calls from the main server to another one holding the actual queues
being used. Or you use WD to dial out, but actual queues or end-points are on a server that is not
Asterisk based, and you want to control how quickly WD is dialing out.

The way it works is that, on agent status changes, you send WD:

• A list of agent channels that are currenty IDLE, DIALLING, BUSY or PAUSED

• A list of calls that are queued on the remote system (that is, not yet assigned to an agent, but
about to)

If you use reverse dialling, it is important that the channels you publish let the local Asterisk reach
the remote agent, so they must go through a trunk (e.g. SIP/destinationserver/123).

If you just use direct dialling, you do not need to tell WD about the exact agents being involved; you
just need to tell it how many agents are in whatever state. The API offers a simmplified call format
to handle this common scenario.

The biggest challenge you face in using API updates is making sure that you send
WD an updated picture on time, so that it can make sensible decisions at the right
time.

For example, if you tell WD that there are two free agents, but fail to notify it that
those agents got busy, it will keep on trying until agents do get busy - that is, never.
This may or may not be what you are looking for.

23

Dialing modes

Depending on how you set up your end-point, WombatDialer offers different dialing modes.

• Direct dialing is the default and works with extension and queue end-points. When doing direct
dialing, WD will first try to connect the callee and will then route the call to a local extension,
that may or may not be a queue. This is fine for delivering voice messages or for situations
where any agent can process any call. When working with call queues, this dialing mode might
introduce a slight delay, as the call has to be answered by the agent - not usually a big deal, but
it might be there.

• Reverse dialing has WombatDialer connecting the agent first and then placing the call. This is
less effective in terms of agent efficiency than direct dialing, as the agent has to wait for the call
to connect. The big advantage is that when the callee picks up, he is immediately on line with
your agent. WD picks an agent at random from the available pool in order to share the load
with all available agents.

• Reverse preview dialing has the agent reviewing the call before the call is made. This may
happen through the API, or by using a special page that WD offers. A number is "reserved"
when an agent is to dial it, and the agent has 10 minutes to accept it (and have it placed) or skip
it. Calls skipped are marked as such and not retried, unless you set up a reschedule rule to have
them retried. Calls for which a decision is not made within 10 minutes are simply returned to
the pool of callable numbers.

When using reverse dialing (vanilla or preview) WombatDialer uses a queue to keep track of agent
presence. This lets you manage log ons, log offs, agent pause and unpauses the same way you would
for inbound queues. Also, as agent state is shared across multiple queues, you can have agents
working on multiple queues at once. In reverse dialing, through, calls are NOT connected through
queues, as WD decides which agent is to receive which call; in order to do this, the agent channels
are connected directly without going through the queue.

When using preview dialing, the agent must reserve a call before it can be placed. In order to do
this, WD offers a rich API for your integration software see Preview API.

WombatDialer includes a simple preview panel that can be called as a web page
and lets you reserve calls and open external URLs for previewing - typically you
will use it to preview a call in your CRM software before it goes live. See the
Preview Page for more information.

A simple example tutorial on preview dialing can be found in Preview dialing with Elastix,
WombatDialer, QueueMetrics and SugarCRM.

Safety measures when running in reverse dialing

Though most calls will correctly be handled in Reverse or Reverse Preview mode, it is always
possible that a call gets "stuck" because the agent that was to serve it was not able to complete it or
to answer the phone (this often happens with remote agents becoming suddenly unavailable
because of network problems, or because their soft-phones crash. It’s wise to make plans in
advance).

24

In this case, WD has a set of built-in safety measures, including:

• If a call stays reserved for more than 10 minutes, it is unreserved and put back in the pool

• If an agent is not able to answer to a call that they asked for within 60 seconds, the call is closed
with state RS_NOAGENT. You should usually add a reschedule rule in order to "recycle" those
numbers.

Testing end-points

The Test connection button allows you to check your End-point. In order to do this, WD:

• first, makes sure that there is a working Asterisk connection

• if the EP is of type queue, checks that a queue with the name defined in Queue name actually
exists on the server

• then it tries dialing a channel on the end-point, as defined in "extension" and "context". If all
goes well, the number is called and a whistling "milliwatt" sound is played.

When running a test on a queue, make sure that your agents are aware that a test
call playing "milliwatt" will be sent to one of the available agents.

Call lists and call records
Call lists are sets of numbers (or more technically, sets of call records) ready to be dialed.

After being created they cannot be deleted, so you will end up having quite a number of them. In
order to avoid having too many of them as visible/selectable items, it is possible to set a "hidden"
flag so that they disappear from normal views.

As happens with the campaigns, you can enter a tilde "~" symbol in the search box to see all lists,
including hidden ones. All searches happen on both visible and hidden lists.

25

If you add calls to running campaigns through the APIs, WD will create a hidden
list called "CampaignName/AUTO" to which all of your new items will be added to.
This list is just a container to store those numbers and is always present. It is not
usually run manually or added to existing campaigns - in particular, if you add it
in the "Lists" section as a normal list to the same campaign, all calls sent through
the API will be called twice. Don’t do it.

It is possible to import and export data from lists through the GUI, and it is possible to create new
lists based on the final state of existing campaign runs from the Reports page.

A call list will store multiple instances of the same number and will dial them in succession; so if
you upload the same set of numbers multiple times, you get them called multiple times.

As with other WD resources, call lists can be protected by Security keys.

Call records

A call record represents a single number to be dialed by WD.

• Number is the number to be dialed

• Attributes are an (optional) set of variables that are sent or read from Asterisk during the call
processing phase.

Attributes make WD very powerful: input attributes are sent to Asterisk along the number and are
available at the dialplan level as standard channel variables, and can also be used to compose the
internal or external caller-id. Output attributes instead are values set by Asterisk on this call and
are meant for data collection.

You can manually edit the number or the attributes from the web GUI, though you cannot delete an
existing call record.

Campaigns
A campaign is the basic unit of work of WD. It behaves as a template for running an actual
campaign, that we call a Campaign Run. A campaign defines:

26

• a set of general properties

• a set of trunks

• a set of end-points

• a set of list (zero or more). They are further classified as normal or black lists.

• a set of reschedule rules

• a set of disposition rules

• a set of opening hours

A campaign can only be run one at a time - before running it again, you must make sure that any
actual runs are terminated. Trunks, end-points and list are instead shared entities - you can have
multiple campaigns using them at the same time.

If you are running a campaign that does not appear to work, remember to check
the Dialer state page that has a deeper view of the decisions WD takes for each
specific campaign.

The following properties are defined for a campaign:

Basics

• Name: a name to display in WD

• Priority: the relative importance of this campaign against any other (see below)

• Status: this field lets you decide what to do with the campaign:

◦ RUNNABLE: this campaign can be run

◦ CLOSED: this campaign cannot be run, but it is still visible in the default editor

27

◦ HIDDEN: this campaign is not visible anymore unless you set the flag "Display hidden
campaigns"

◦ ERROR: this campaign is marked as an error. Cannot be started but visible.

• Idles on termination: whether this campaign terminates when out of numbers, or will live on
waiting for more numbers to be added via the API

• Batch size: The number of calls to be placed that are cached in memory when reading from the
database. They should be roughly 2x the size of outgoing trunks. The higher your batch size, the
less disk accesses to find new numbers are necessary; the lower it is, the more "snappy"
Wombat is in picking up new numbers or reschedules.

• Security key is the optional key that protects this resource.

Active Period

• Start active period: the time of day after which this campaign can place calls

• End active period: the time of day before which this campaign can place calls

• Allowed Days of Week: the days of the week that the campaign is allowed to run on

Call Placing Details

• Answer timeout: if the number dialed does not answer within this period (expressed in
milliseconds), consider the call to be a NOANSWER

• Forced closure: the maximum length of this call, in seconds. If reached, the call is forcibly
closed and set to status TIMEOUT. Set to zero to turn off.

• Dial CLID: the caller-id to use for this campaign. This may be overridden by your provider.

• Agent CLID: the caller-id that will be set on the end-point. This might for example be the
internal code of the campaign, or the name of the called person. If the Agent CLID is not
displayed correctly, try adding a short delay between the start of the EP leg and the queuing, so
that WD has a bit of time to set it up before the call is queued.

• Dial account: the account code that will be used by Asterisk when writing CDR records

• Dial presentation: The number to set as "call presentation", that is the number that callees are
expected to see as the caller-id. This may be overridden by your provider. Currently not used -
use Dial CLID instead.

• Auto-pause: if this is set and the campaign has queue end-points, each agent will be
automatically paused when the call terminates (so that they can process their wrap-up
activities). The agent will then have to manually unpause when he is ready to take a new call.
(Note: this is not currently implemented).

• Campaign variables: a set of variables defined for this specific campaign. They should be in the
format "A:B,C:D" to set a dialplan variable "A" to "B" and "C" to "D".

Amd & Boosting

• Boosting model: turn this on to enable Adaptive mode (see Adaptive boosting) or leave to OFF
for manual mode (controlled by the default boost factor and the manual boost factor on the Live
page).

28

• Initial boost factor: This is the extra boost factor applied when a campaign runs. This value
can be modified dynamically through the Live page.

• AMD FAX tracking mode: Determines which AMD/FAX tracking mode is to be used. If AMD or
fax are to be detected, the dialplan variable AMD_MODE is set to the required mode. See AMD
and fax tracking.

• Extra AMD settings: A string of additional parameters to be used when doing AMD detection.
This is translated into the dialplan variable AMD_EXTRA. You may or may not want to use this.

• Audio file to send on AMD: The name of a file to be sent to the client on AMD detection. This is
passed to the dialplan under the name AMD_FILE

• TIFF file to send on fax: The name of a TIFF file to be sent to the client on fax detection. This is
passed to the dialplan under the name FAX_FILE

Logging

• Additional logging: set to QM_COMPATIBLE to have the campaign log to queue_log on the
Asterisk server

• Alias for logging: if this field is set, this is the name that this campaign will be logged under on
the queue_log. If empty, the name of the campaign is used. This way you can have multiple WD
campaigns log as the same Asterisk queue.

• Attributes to be logged as QM variables: which attributes (if any) are to be sent to
QueueMetrics. See Logging of attributes for a detailed explanation.

• HTTP notification URL: the URL to be called when a call has a state change in WD

• Send campaign events by e-mail: whether WD should send life-cycle notifications by e-mail.
Can be set to:

◦ NO: No notifications.

◦ ALL: All campaign life-cycle changes.

◦ FINISH: Send only on campaign completions.

• E-mail addresses: a set of e-mail addresses to receive notifications for this campaign.

A campaign has a priority so that you can have multiple running campaigns at the same time.
Priorities are taken into consideration from the lowest to the highest, where each priority level has
a go to fill in all available channels; if some available channels are left over, campaigns with a
higher priority number are processed. For example, imagine you have a campaign of priority 1
linked to a queue (for human outbound) and then a quality review automated campaign running at
priority 10. If there are available agents, it is just natural that the campaign at priority 1 has its go
first at placing calls. But if for example some of your agents are paused, then not all outbound lines
are used - in this case, they are used by the campaign at priority 10. As soon as your agents go back
on line, calls for them are dialed first.

If you have multiple campaigns at the same priority level, they are offered a fair chance of placing
calls, so you would expect them to place roughly the same number of calls if calling an
homogeneous set of callees. In practice the numbers may differ based on call length, call
completion ratio and average answer times.

29

You can define an active period for calling, so that you can e.g. tell WD to place calls between 9 AM
and 4 PM of working days. Any reschedules will be placed only in the active period. If the campaign
is in its active period, then any Opening Hours linked to the campaign will be processed. They will
be processed in the order they are defined, and in case of no match, the value from the last rule will
be used to decide whether the campaign can run or not. See Opening Hours.

There is no guarantee as which trunks and end-points will be chosen when a campaign is running.
Call lists instead are processed in order from the first to the last.

If you want WD to send you e-mail when something happens on a campaign, you should make sure
that you configured the SMTP parameters as explained in Configuring e-mail. You can have WD
send you notifications for all campaign life-cycle event changes, or simply when the campaign
completes.

What happens to hidden campaigns?

Hidden campaigns are removed from the editor so that you don’t have to see them all of the time.
They are still present on the database, and may be found again by:

• entering a search string. It will match all campaigns, including hidden ones (this way it easy to
access them and un-hide them if necessary)

• entering a single tilde "~" in the campaign search box. This will display all campaigns, whether
they are hidden or not.

Using attributes in Caller-Ids

WombatDialer lets you enter placeholder values in the Dial CLID, Agent CLID, Dial account, and
Caller presentation fields. These values are expanded when a call is actually being connected using
the values of attributes set for the number dialed.

For example, you may be dialing number 5551234 to reach Mr. White. You may upload a list of
numbers setting the attribute NAME to the name of the person called, and you may want the caller-
id changed when the call reaches your agents so that they see "WHITE" instead of the campaign’s
caller id. Or you may dial a list of numbers by setting an unique call presentation for each of them.

In order to do this, you have to specify attributes to be expanded. For example, if you set the agent
CLID of your campaign to "C1 ${NAME}", agents will see on their phone "C1 WHITE", "C1 SMITH"
and so on. You may use multiple variables in the same ID, so that you can pass along a practice ID,
or the code used to find the person called in your CRM.

Together with the custom attributes you manually define for each number, WombatDialer will also
expand:

• ${NUM} to the number being called

• ${LST} to the name of the list that the number belongs to

Adaptive boosting

WombatDialer has a zero-configuration adaptive-boosting mode that lets Wombat manage the over-

30

dialing rate of a queue-based campaign. This way, you can start with a rough idea of the required
over-dialing rate (say, 3x) and Wombat will tweak it continuously based on recent traffic, state of
the underlying queue, current completion rates and nuisance calls detected.

The model is based on the fact that the quality of traffic on the same campaign, with leads coming
from the same list, is strongly correlated in time; so by looking at recent data it is able to extract
reasonable call patterns and adapt the current over-dialing rate.

The adaptive model is allowed to boost calls in the range from 1x to 4x; this way, if you are running
a campaign with a default boost factor of 2X, the booster will have it run between 2X and 8X. On top
of this, you can always use the Boosting control from the Live page to further correct the current
amount of applied boosting.

Please note that the adaptive booster will try counterbalancing any change you
make manually, so you should use the manual toggle only to "speed up" the
adaptive convergency behavior in case the dialer should not be aggressive enough
at pursuing it.

As with all adaptive and predictive models, the quality of its predictions is strongly linked to how
much data it has and how many calls are being made at once, as higher numbers tend to make the
system more stable and smoothen its variance.

It works well if you have a good number of calls (dialing at least 40 channels simultaneously) where
it can usually get you an agent occupation of 60% to 80% with a nuisance rate of about 1-3%, and it
scales back reasonably well for smaller systems with about 10 channels. Of course these figures
may be significantly different based on your traffic patterns.

An adaptive boosting example

The following simulation is based on actual real-life data; it shows you a situation where you have
30 agents and you are initially over-dialing at a rate of 10X, for a period of a few hours, placing a
total of about 100,000 calls. The blue line in the graph is the actual number of agents that are in
conversation.

As you can see, the over-dialing rate is initially adequate, but the blue line often has "valleys" where
the over-dialing rate is not adequate. Especially in the second part of the campaign, traffic patterns
change and Wombat is not dialing effectively anymore. At the end of the campaign, agents have an
utilization of about 56% and a nuisance rate of about 3%.

31

By using the adaptive model, you can see that the blue line is consistently higher, and that it
matches trends in calls by counterbalancing the quality of traffic. By the end of the campaign we
have a total utilization of 73% (+30% over the basic model) with a nuisance rate of 4%.

This example was chosen because the quality of the leads was intentionally pretty bad, and this is
the case where you have the highest improvement in using a predictive model.

Reschedule rules

It is a fact of life: most calls placed on an outgoing campaign are destined to fail. Maybe the user is
not available, maybe your provider has a temporary failure, or maybe your PBX (or even WD
itself!) crashes while calling. It is advisable to take this into consideration when programming a
campaign. For example, you could say that:

• if a number is busy, you retry two times after 5 minutes each

• if a number does not answer, you retry two times after 30 minutes each

• if a call has a technical glitch and ends in error, or is lost due to a PBX crash, then retry it once
in 10 minutes

The number of retries is computed after the call is first attempted - so if you have a retry rule of 2,
the call is first tried once and then retried twice, for a maximum of three times if it goes wrong
every time. All retries are attempted in the active period of the campaign - so if a call is rescheduled
in 20 minutes at 5:50 PM and the campaign is not allowed to run after 6 PM, then it is retried the
next day.

WD in general tries first to obey any applicable reschedules and then fetches new calls form call
lists, so you can expect the retry period to be quite accurate in most scenarios. Still there is no hard
guarantee that a call will be placed at exactly the time it was rescheduled for.

Parameters are set as follows:

• On status: the call status this rule applies to

• With custom status: the custom status to consider (see below). Custom statuses can be set
through the API - see Controlling WD from Asterisk.

• Max Attempts: the maximum attempts this rule applies to. If zero, it always applies and the
reschedule counter is not incremented (see below).

• Retry after: the number of seconds to retry after

• With mode: the way to compute the retry period

Each rule is evaluated against the current number of attempts for the call, so it does not take into

32

consideration the statuses for previous attempts.

When rescheduling, you can set the mode to FIXED or MULTI. In fixed mode, if you set the retry
time to 5 minutes, it tries after 5 minutes at every attempt. In multiplicative mode, the retry period
is computed multiplying the number of the current attempt by the number of attempt it’s trying - so
it would be 5 minutes on the first attempt, 10 minutes on the second, 15 minutes on the third and so
on.

If a call has a normal completion or is over the maximum number of retries, then it is not
rescheduled. You can look-up the status of the last attempt in order to know why it was not
rescheduled.

Writing advanced reschedule rules

It is valid to have multiple reschedule rules that pertain to the same status code - in this case, WD
will find the rule that matches. For example, imagine we have two rules:

 Attempts Retry in
 -------- --------
RS_BUSY 2 300s
RS_BUSY 5 1800s

Up to the second BUSY attempt, WD will retry in 5 minutes (300 seconds); from the third to the fifth,
it will retry in 1800 seconds (30 minutes).

The status code considered is always the current status code; so for example given this set of rules:

 Attempts Retry in
 -------- --------
RS_BUSY 3 300s
RS_NONASWER 1 600s

If we get a BUSY on first attempt and a NOANSWER on second attempt, as the NOANSWER retries
only once, the call is not retried.

You can also have an extended status set through the APIs - if that is present on the call, the rule
matches only if the extended status matches - see Controlling WD from Asterisk.

If you specify an ExtStatus for the call, then only the same ExtStatus will match. If you do NOT
specify an ExtStatus, then the rule will match any ExtStatus. If you need the rule to match only on
an empty ExtStatus, then you must set it to $.

Handling technical errors through Reschedule Rules

Sometimes you do not want to treat technical errors (e.g. statuses like RS_LOST, RS_NOAGENT and
RS_ERROR) as normal recalls: you want to keep track of the number of recalls and handle them
accordingly only for calls that actually try to reach a person.

33

In this case, you can enter zero as the maximum number of attempts; the rule will match no matter
how many recalls you are having (and will be preferred to other rules), and the number of attempts
will not be incremented on the next recall.

When you run a report for the number dialed, it will then be possible to see a number of calls
having the same "attempt number"; this is correct, it means the rule matched and was applied
successfully.

As these calls do not increment the recall counter, this feature can send calls into
an infinite loop; therefore it is important that you only handle transient technical
errors with this, and that the reschedule time is high enough that the problem will
likely be resolved before the call is attempted again.

Disposition rules

Disposition rules are like Reschedule Rules; the main difference is that while a Reschedule Rule is
applied on each call tried, a Disposition Rule is matched only when the call is not rescheduled
further.

For example, let’s say that you are dialing out on a campaign where there is a reschedule rule to
retry twice in 10 seconds on busy. You dial a number, and the number is busy; it is rescheduled in
10 seconds, retried and it’s busy again; it’s rescheduled again, and again it’s busy. At this point the
call is "complete", meaning that it is not meant to be rescheduled again. So, the call will be matched
against any disposition rules with the current status of "busy".

With disposition rules, you can have actions that are more complex than reschedule rules and are
meant to interact with external systems. You can:

• Call an HTTP service of type GET or POST, with a variable payload.

• Send an email (for example, if you want someone to be notified when some rare status
happens)

• Add the number to an existing list,

• Add the number to an existing blacklist. This is the same thing as adding the number to a list,
but with an optional parameter to control the amount of time the number is to be blacklisted.

• Pipe the number to be recalled on a different run. The run must be active at the time the
number is added.

Multiple rules may match the same call, so for example you might be sending two separate HTTP
notifications and an email, or you could reschedule the number to be recalled and add it to a new
list at the same time. Matching happens on the basis of the (last) dialing state. If the rule specifies an
extended state, it is to be matched as well.

When a Disposition Rule is matched, sometimes it is useful or necessary to access some information
from the call and put it in the request, for example to specify the number called in the email body.
WombatDialer offers a number of variables that you can use for this purpose:

• NUM is the number dialed

34

• N_RETRY is the number of retries made on this call

• LIST is the list name

• STATE is the current state

• EXTSTATE is the extended status (if set)

• CAMPAIGN is the name of the campaign that this call was dialed upon

• RUNNAME is the name of the current campaign run

• ATTR is a prefix that lets you access call attributes. They can be inbound or outbound attributes.

So if you set an HTTP GET URL of 'http://server/page.php?num=${NUM}&var=${ATTRV}' will be
rewritten with the current number and the current value of attribute V.

When doing a disposition to a list or a different run, you can control which attributes are to be set
on the new number. You can decide if you want ALL, NONE, INBOUND or OUTBOUND attributes;
plus you can manually specify a set of attributes which values will be set on the new call.

Black lists

WombatDialer has the concept of Black Lists; they are lists like any other but are used to collect
numbers that are not to be called.

When WombatDialer is loading numbers to be dialed, they are checked against all black lists
defined for that campaign. This is done automatically and behind the scenes; if a number is found,
it is logged as dialed in state BLACKLIST without actually trying it.

Blacklists are checked dynamically when a number is first scheduled; so if you add numbers to a
blacklist while a campaign is running, new numbers to be scheduled will be checked against the
blacklist.

Starting with WombatDialer 19+, black lists are checked two times:

• every time a number is fetched to be dialed, and

• just before actually dialing it

If you add a number to a blacklist, future retries may be blacklisted even if the original call was not.

You may have multiple blacklists on a campaign; their order in unimportant.

A number may be added to a blacklist up to a specific point in time; this means that the number
will be a valid match for the blacklist only until the date passed is in the future. In order to do this,
you need to set a call attribute called BLACKLISTED_UNTIL with a valid date in the format "YYYY-
MM-DD.hh:mm:ss" or "YYYY-MM-DD". You may also have an expiry date computed for you by using
a Disposition Rule to add the call.

Note that if you use the shorter date format, the number is supposed to be blacklisted until the
midnight of the given day. If the date format is not valid, the number will be blacklisted forever.

35

It is perfectly acceptable to add a call multiple times to a blacklist, each time
having different expiry dates. The number will be blacklisted up to the maximum
date specified.

AMD & Fax detection
WombatDialer allows you to track answering machines (AMD) and faxes. Following the general
WombatDialer philosophy of leveraging the capabilities of your PBX, WombatDialer sets a series of
additional dialplan variables that are to be used in order to detect them and react accordingly. This
way:

• You configure AMD and/or fax detection on your PBX

• When either detection triggers, you have variables that tell the dialplan how to handle those
cases

In general, we suggest using an extended status of "AMD" when an answering machine is detected,
and "AMDSENT" when a message is left on the machine; and "FAX" when a fax is detected and
"FAXSENT" when a fax is successfully sent.

It is also wise to offer your agents a quick blind transfer hook that lets them transfer calls to AMD
or FAX routines in case the detection went wrong. See Call transfers.

Working with AMD and fax can be tricky. Make sure you can talk to an Asterisk
consultant with a proven experience before running a large-scale campaign.

Detecting answering machines

Asterisk ships with an application called AMD that will analyze audio and try to guess whether the
other party is a live person or an answering machine. Keep in mind that the call does not "go
through" while the analysis is in progress, so there is a definite trade-off between a long and
accurate detection versus a quick but less accurate detection.

AMD receives a set of parameters to discriminate what is an answering machine and what is a live
person, so you may want to experiment a bit to find a setup that works for your country and for
your callers.

A good starting point would be to set in amd.conf the following parameters:

initial_silence = 2500
greeting = 1500
after_greeting_silence = 300
total_analysis_time = 5000
min_word_length = 120
between_words_silence = 50
maximum_number_of_words = 4
silence_threshold = 384

36

It is also customary to send a background tone (be it blank or a beep) to the called party to help set-
up the line on SIP circuits. This way the accuracy of AMD is reported to be increased considerably.

So you would:

• Play audio, e.g. via Background(beep)

• Run AMD, optionally passing the contents of AMD_EXTRA if you want to override the default
parameters

• Check the status of the dialplan variable AMDSTATUS. If set to "MACHINE", go to the AMD
processor; else route to a live agent. You may want to log the AMDCAUSE as well; it contains an
explanation of the reason why Asterisk decided the call was of the specific kind.

• On the AMD processor, set the extstatus to "AMD", so that Wombat logs this call as an Answering
Machine

• Wait for silence (so the greeting message is terminated)

• Play the audio file defined in AMD_FILE

• Set the extstatus to AMD_SENT

• Hang up.

An example is available in Answering-machine detection.

Detecting faxes

Asterisk is natively able to detect faxes on DAHDI and SIP channels; all you have to do is tell it to
run the detection engine.

• For DAHDI, you have to turn on the option "faxdetect" in chan_dahdi.conf by setting it to
"incoming", "outgoing" or "both".

• For SIP, you need to turn on "faxdetect" in sip.conf. Valid options are "cng", "t38" or "yes" for
both.

When a fax is detected, the dialplan will jump to the extension "fax". At this point:

• you set the extstatus of the call to "FAX" in Wombat (so it can be traced)

• you send a fax by issuing the command SendFAX(/path/to/FAX_FILE,d), where FAX_FILE is the
file name set through the GUI

• you set the extstatus to "FAXSENT" in Wombat

• you hang up the call

The file must be a valid TIFF file that is compatible with Asterisk. Digium’s "Fax For Asterisk
Administration Manual" documents a process for converting a PDF file into a TIFF using commonly
available Linux command-line tools.

Campaign runs
Campaign runs are real, out-calling instances of campaigns. You start them from the Live page, by

37

selecting one of the available campaigns. They are named after their parent campaign and the time
when they were started.

The system displays a set of information on the Live page:

Campaign name: C1
Started at: Wed Oct 17 15:54:22 CEST 2012
Current state: COMPLETED
Priority: 10
Calls placed: 40 - Items in call cache: 0
Calls terminated: 10
Life-cycle termination rate: 25% - Reschedule rate: 75%
Est. remaining calls: 0
Running for: 00:00:05 - Estimated completion in: 00:00:00
Attempts per hour: 72720 - Completions per hour: 72720
High-water mark: 20 in L2

The run name is actually made of the Campaign name plus the time it was started. This uniquely
identifies a run in the system.

The other parameters are as follows:

• Current state: is the state the run is in (see below).

• Priority: is the campaign’s priority

• Calls placed: is the total number of call attempts made

• Items in call cache: is the number of calls currently held in the hopper plus any open
reschedules

• Calls terminated: is the numbers of calls that have either been successful or gone through the
last possible reschedule, so they will not be retried

• Life-cycle termination rate: is the percentage of calls that are not to be retried (terminated)

• Reschedule rate: is the percentage of calls that are to be retried

• Est. remaining calls: this is a rough estimate of calls that remain to be placed. Might be rather
inaccurate - consider it only a basic indicator that will converge to zero as the run terminates.

• Running for: is the total time that this run has been going.

• Estimated completion: tries to display the remaining time to completions. This time may
actually vary strongly from what is displayed depending on what happens during the campaign.
Estimates will be produced after a few calls have completed.

• Attempts per hour: its the average number of calls attempted per hour on this run

• Completions per hour: is the average number of calls completed per hour

• High-water mark: the last call record added to the cache

A run’s life-cycle

When a run is first started, it goes through a set of stages.

38

Initially the run will be made RUNNABLE, WD will prepare to run it and will put it in RUNNING
state. A run stays in state RUNNING as long as it has retries to complete or calls not yet placed.
When a RUNNING campaign is out of the allowed time period, it is put to WRONG_TIME; from here
it goes back automatically to RUNNING state when time conditions (hour and day of week) are
successfully matched.

When out of calls, a run can either COMPLETE or become IDLE; when IDLE it waits for new calls to
be added through the API and goes back to RUNNING mode to process them.

A RUNNING campaign run may be manually PAUSED and from PAUSED it can manually be made
RUNNING again.

If a run is no longer needed, it can be manually set to REMOVE; when in REMOVE status the run is
terminated and cannot be restarted.

A call’s life-cycle

When a call is started, it is first loaded in a cache called hopper that contains calls that are to be
dialed soon. This way it is not necessary to consult the database for each and every call to be made.

39

When WD is about to place the call, it marks it as SCHEDULED and sends it to Asterisk for
processing; if all goes well, it then goes from REQUESTED to DIALLING to CONNECTED and then
TERMINATED.

Of course it may not be possible to start the call (so you get BUSY, NUMBER and NOANSWER states),
or the call might be ended by WD because it exceeded the maximum allowed duration (TIMEOUT).

When using reverse dialing, a call starts its life being RD_SCHEDULED, so that the agent can be
called. When this happens, the call progresses forward. In preview mode, the call is first
RD_RESERVED and when the agent approves it, it is placed.

Initial states

IN_HOPPER

Call will be placed soon - not visible to user

SCHEDULED

WD requested the call to be placed

RD_RESERVED

When preview dialing, an agent has reserved this call but has not processed it yet

RD_AGENTREQ

When doing reverse dialing, WD is connecting the to an agent before the call is actually
placed

40

Call processed

REQUESTED

The request was sent to Asterisk for processing

RD_REQUESTED

Asterisk is processing this call when reverse dialing

DIALLING

Asterisk confirmed the call was started

CONNECTED

The opposite side picked up the call

TRANSFERRED

Agent transferred the call somewhere else. The agent is free but the trunk’s channel stays in
use. This call is not controlled by WD anymore.

Error states

RS_ERROR

A technical error happened while dialing

RS_LOST

WD lost track of this call. Usually happens only on system crashes.

RS_NOAGENT

An agent that was being pre-dialed in reverse mode did not answer. You should reschedule
those calls.

Calls that could not go through

RS_REJECTED

The call was rejected by the network. This is usually caused by the upstream provider
returning 'Congestion' (all circuits busy), 'Off-hook dialing' with analog interfaces, or your
upstream provider terminating a call before it’s answered without providing any status code.

RS_BUSY

Number called was busy.

RS_NUMBER

Number called appears to to be invalid. Asterisk also raises this error if it cannot allocate a
new channel for the call.

RS_NOANSWER

Number did not answer within the Answer timeout period set on the Campaign

Completion states

TERMINATED

Call completed successfully

41

RS_TIMEOUT

Call was forcibly closed because it exceeded the maximum allowed duration set on the
Campaign.

RS_AGENTSKIP

Agent decided to skip this call.

RS_BLACKLIST

The call was skipped as the number was blacklisted.

States not already implemented

RS_AGENT

Agent requested special retry.

Call transfers

This feature is currently experimental and may be subject to changes in future
versions.

 This feature requires Asterisk 13 or newer, and won’t work on earlier versions.

WombatDialer is able to track calls that are transferred by the connected agent. Once a call is
transferred, it keeps existing in WombatDialer, but the agent is freed so they can take another call.

The agent can transfer a call using two ways:

• With a Blind Transfer, that is, forwarding the call to a fixed destination, for example a second-
level queue. This is usually implemented using the feature code ## in FreePBX, but your PBX
may be set for a different feature code

• With an Attended Transfer, where the agent dials an extensions, speaks to the receiver, and
either confirms the transfer or goes back to the original call. In a stock FreePBX system, this
uses feature code *2 to start the transfer and *2 to confirm.

When a call is transferred:

• Direct calls keep existing on the Live page (in state TRANSFERRED), and are logged until their full
completion (time talking to the agent plus time until call completes); still the agent is freed at
the moment the transfer is confirmed and can take another call

• Reverse calls are closed by the moment the transfer is acknowledged, so the call length is only
the one spent in conversation with the agent.

Opening Hours
It is very often needed to have a finer level of control on the opening hours of a campaign.

Typical scenarios include:

42

• Having different opening and closing times for a campaign during the week. For example,you
might want to dial out from 9:30 to 11:30 and 13:30 to 17:00 Monday to Thursday, and only 9:30
to 13:00 on Fridays.

• Marking specific time periods as invalid; for example, public holidays.

It is also often needed to maintain and share these "opening hours" across campaigns; for example,
by having one single instance of public holidays to be shared across all campaigns.

Opening Hours work by defining a set of items that must match for a rule to be considered valid.

• Rules are scanned from top to bottom, in order

• If a rule matches, its output will be passed to the campaign.

• If no rule matches, the campaign can ask a rule for a default value.

For example, let us say that we want to implement the multiple hours scenario as described above:

Rule DayOfWeek DateFrom DateTo TimeFrom TimeTo State

 #1 Mo Tu We Th - - 9:30:00 11:30:00 OPEN
 #2 Mo Tu We Th - - 13:30:00 17:00:00 OPEN
 #3 Fr - - 9:30:00 13:00:00 OPEN

You could also have a separate rule based on dates to flag some days as always invalid:

Rule DayOfWeek DateFrom DateTo TimeFrom TimeTo State

 #1 - 25/12 26/12 - - CLOSED
 #2 - 1/01 1/01 - - CLOSED

Rule 1 tells us that December 25 and 26 are always invalid; and January 1 is as well.

When running on an existing campaign, you first have to make sure that the campaign is allowed to
run in the specific time period.

In most cases, you will want to keep the campaign always active and tweak
associated Opening Hours instead. This lets you use campaign rules for very
simple campaigns and Opening Hours for more complex scenarios.

Then you would add:

• First the Opening Hours based on dates. If any of these match, we know that we cannot run.

• Then you would add the rule about time periods by day, with a default of CLOSED.

The order in which you add Opening Hours to a campaign is important, and so is
the order of rules within an existing Opening Hour.

43

Opening Hours Inspector
Under the Opening Hours tab, inside of the Campaign Editor page, you can see a button named
"Test Opening Hours". This button opens the Opening Hours Inspector, a tool designed to preview
the effects of Opening Hours rules on your campaign.

As you can see in the picture, the inspector shows a colored bar for each day of the week, each color
representing the state of your campaign in different times of the day. You can choose the date from
the calendar widget at the top of the inspector.

If you fly with your mouse over the colored bars, WombatDialer will show you a pop-up text with
the state of the campaign, the name of the rule that is being applied and the name of the matching
sub-rule. If a sub rule has no name is automatically named after a number in a sequential fashion.

Here is a list of the possible states for a campaign:

• OPEN: The campaign is open due to the campaign active period (no Opening hours rule
applied).

• CLOSE_DAY: The campaign is closed due to the campaign active period (no Opening hours rule
applied).

• CLOSE_HOUR: The campaign is closed due to the campaign active period (no Opening hours
rule applied).

• CLOSE_RULE: The campaign is closed due to an explicit Opening Hours rule.

• OPEN_RULE: The campaign is open due to an explicit Opening Hours rule.

• DEFAULT_OPEN: The campaign is open due to the Def. Mode of the last Opening Hours rule

• DEFAULT_CLOSE: The campaign is closed due to the Def. Mode of the last Opening Hour rule.

44

Call logs
After a call record is processed, it leaves a "trail" in the form of a call log.

From here we can see:

• Call: this section displays the number that was called and any attributes that are set on that call
record. Any output attributes (coming from Asterisk) are marked with a ">" prefix.

• Campaign: the name of the campaign that this call was placed on

• Run as: the name of the campaign run that had this call placed

• Run started: when the campaign run was started

• List: The list this number belongs to

• Attempted: when the call was actually attempted

• Wait Pre: the difference (in milliseconds) between call stages REQUESTED and DIALLING

• Wait After: the difference (in milliseconds) between call stages DIALLING and CONNECTED

• Talk: the duration (in milliseconds) of the active call, that is, while the callee was connected

• Status code: the call status code when it was closed

• Extended status: the extended status set by Asterisk

• Retry #: The number of retry this call was on (0: initial attempt)

• Next retry: When the next retry is scheduled. If set to zero, this means the call was not set to be
rescheduled.

45

• Trunk: The trunk the call was placed on

• Log Id: The internal log id

• Asterisk channel: The Asterisk channel that was created for the first leg of the call

• Asterisk unique: The Asterisk internal Unique-Id that was used

Users and security
WombatDialer offers a powerful and pervasive security model that is similar to the one used in
QueueMetrics. It is built around the concepts of users, classes and keys.

The idea is that each user has a keyring and all features are controlled by keys. Every time
WombatDialer has a possible feature to show the user (e.g. editing servers) it checks whether the
current user holds the correct key in its keyring. If he does not have it, the feature is hidden or
grayed out.

Each user has a keyring that is composed of their personal keys plus all the keys for their class. This
way you can organize multiple groups of users (e.g. administrators, monitors, etc) with different
grants, and then give each specific user additional keys to fine-tune each person’s profile.

A set of default users and of security keys is available below.

The security model

You can set security keys on most entities in WombatDialer - you can have them on servers, trunks,
end-points, campaigns and lists. They will be enforced for:

• Selection of items to be added to campaigns

• Live monitoring

• Reporting

The following rules apply:

• Elements are visible both to users holding the required key and to their creator, even if he does
not hold the required key (in order to avoid "locking yourself out")

• Elements having no keys will be visible to everyone

• Key security is not transitive, that is, if you can observe a campaign, you can observe it in its
entirety, even if (say) one of the trunks it uses is protected with a key you do not hold.

Users

A user is some person who can log on to WombatDialer.

46

They have the following properties:

• Login and Password are used to log on from the main page

• Real Name is displayed on the WombatDialer page

• Enabled may be toggled to avoid a user logging on without deleting it.

• E-mail The user’s e-mail address

• Master key: if set to "yes", all security checks are bypassed. You should only set it to yes for
testing and debugging.

• Class is a pre-defined set of keys that is used for this user. Any user must have a class.

• User keys are additional keys granted to this user. They are space.-separated. If keys are
prefixed with a minus sign, they are revoked if present in their class and ignored otherwise.

• Logged on are the number of successful log-ons for this user and Last logon is the time this
user last logged on successfully.

• Comment and Token are free fields you can use to keep track of your users.

Password security

WombatDialer can store passwords either in an encrypted form made of a SHA with random salt
(level 2) or plain text (level 1). Encrypted passwords are not recoverable. The defaults are that all
default passwords are stored as plain text, while any password changed by the user is stored in
encrypted form.

47

This behavior is controlled by two parameters in tpf.properties:

pwd.defaultLevel=2
pwd.minAllowedLevel=1

The first parameter defines the format of new passwords, while the second one decides which is the
minimum level for a valid password. There is usually no need to modify the defaults.

If those parameters are missing, both of them are level 1 - unencrypted passwords.

There is really no way of recovering an encrypted password. If you lock yourself
out of a working system, Loway technicians can be asked to connect to your server
and set a temporary password for you. This is a paid service.

Classes

Classes are common profiles to be given to all users of a certain kind. So you do not have to
remember which keys to give users for each specific functionality, but you can group them all
together.

Any class has the following properties:

• Class name is the name used in the User Editor to choose the class.

• Description is a long version of the class name

• Keys are a space-separated set of keys that are granted to all users of this class.

You can create new classes than the ones that ship with WD in order to fine-tune access controls for
your instance.

48

The system log

When something important happens in WombatDialer, it is written to the System Log. The system
log tracks:

• Campaign life-cycle events

• User logins and log-offs

• System errors

49

Running WombatDialer

Understanding the GUI
The WombatDialer GUI is made up of a set of editors - there can be multiple editors on the same
page.

An editor can:

• display a set of records (e.g a list of servers, campaigns or end-points)

• select a record in the set (usually in order to load a dependent editor - e.g. when you select a List
then the editor for the numbers of that list will be enabled)

• edit a record

Using editors

Editors let you search by text in their items and let you sort data by clicking on the relevant
columns.

When you are editing an item, the following functions might be available:

From left to right, these icons mean:

• Save current record

• Add a new record

• Clone the current record

• Delete the current record

• Know who created the current record, when it was created, who modified it last time and when
it was last modified

Sometimes when an editor has an item selected and it’s impossible to unselect it, it is then
necessary to close the relevant tab and reopen it from the Home page.

Hiding and deleting entities

In many cases it will not be possible to delete records when you created them. This is because such
records are referenced by other records that cannot be deleted - for example, a campaign that has
run cannot be delete anymore, as it is referenced by the logs created during the run.

Still, it would sometimes be useful to hide things you do not currently need. So campaigns and lists
have the concept of visibility - you can make them invisible so they won’t appear anymore in
selection menus and on the main screens.

50

They will not be deleted though - you can still search them by name, and you can get a complete
view of all records (including deleted ones) by searching for "~".

Controlling the dialer
From the main page, you can control the status of the dialer process.

You can see how long the dialer has been used, its current status and the entities currently loaded
(that is the campaigns, trunks and end-points being used). The dialer is "lazy" and loads entities
only when needed, so entities do not appear until they are actually used.

The check box next to the Reload button is used to set the control in auto-reload mode; this way the
current state of the dialer is refreshed automatically every 5 seconds.

You should see:

• for the dialer, the current state (usually DOWN or READY) and the number of licensed channels.

• For each PBX, whether it is successfully connected or not

• For each running campaign, the current status, the total number of calls placed ("Att") and the
size of the current reschedule buffer ("Rtr"), plus the date when the run was started

• For each trunk, the total capacity and the current used channels. A green / red icon shows
whether the relevant PBX is on-line or not

• For each EP, the total and used capacity. A green / red icon shows whether the relevant PBX is
on-line or not.

For Queue EPs, a number of additional entries are displayed:

• You can see the number of free agents in respect to the correct queue capacity, the number of
idle entities, the over-dialing channels ("O/D"), the number of queued calls that are ringing or
waiting to be connected ("W") and the used channels ("U").

• If dialing is currently not allowed because the queue has too many waiting calls, the string

51

"BK_W" is displayed.

• A list of statuses that are reported by the queue ("AS") and a set of statuses that are computed by
Wombat ("C")

• A list of queued calls (if any)

• A list of agents working on the queue, and their current status (Paused, Talking, Ringing, Idle or
Error)

When you restart the dialer, all state is synchronized to disk and all entities are reloaded.

If you want to have a deeper view about what the dialer is doing, especially when it’s not dialing
out, you should check the Dialer state page that has a deeper view of the decisions Wombat took for
each specific campaign.

In general, the dialer is supposed to start automatically when the system starts - see Dialer startup
for more information on the issue.

Observing Asterisk queues

When an EP of type Queue is used, its status should immediately reflect the state of the underlying
queue.

Before using those EPs, it is advisable to run a limited test to make sure the configuration is in
working order.

In order to run such a test:

• create a campaign with a Queue endpoint. You may create it IDLE and add no call lists, as we do
not need the campaign to do anything special

• run that campaign

• reload the Dialer status in order to see if the queue is being observed (you have to click on the
reload icon manually each time).

52

• If the queue is present, you should see it something saying "Free 4 of 7 W:2". This means that
WD is seeing 7 agents connected of which 4 are free (where 4 is the result of multiplying the
actual number of observed channels by its boost factor), and that there are 2 calls waiting on
the queue.

• You should be able to see the current agents and waiting calls - if any - the queue is processing.

• try and log on, log off, pause and unpause an agent. You should see the number of free and
available channels change accordingly. Try also sending calls to the queue and see if the
number of free agents and of waiting calls is correct.

• try also placing calls from some agent extensions and see if the number of free channels reflects
this correctly.

• if you plan to have agents working on multiple queues at once, run the tests above while the
agents are logged on in at least two queues and make sure statues are updated correctly.

The Live page
The Live page lets you interactively control and monitor what the dialer is doing. You will be able to
see at once all the Runs of Campaigns that you can access.

The top part of the page displays a set of "doughnut" graphs, showing:

• The active channels per Asterisk servers involved. Each Asterisk server is displayed in a
different color and you can see which is which by hovering over it

• The status of calls on trunks. This shows how many calls are in each state.

• The usage of trunks by campaigns

• The relative number of calls per each trunk

• The usage of end-points by campaign

• An estimated number of remaining calls, divided by campaigns. This number is estimated as it is

53

impossible to know in advance how many recalls will be necessary to complete each campaign.

• The status of each running campaign

If you fly over each pie slice in the graphs, then a legend will be shown explaining what that slice
means. Note that for live calls and campaign runs, the color codes are fixed to make them easily
recognizable at a glance.

Just below the graphs, there is a row displaying (for all campaigns):

• The number of open calls

• The total number of calls placed on running campaigns (since they were started)

• The call termination rate, that is the percentage of calls attempted for which a reschedule was
not necessary

• An estimated backlog of calls that have to be placed for running campaigns. This only counts
calls in the dialing buffer

Below is a pageable list of live calls, that is refreshed every few seconds. For each call you can see:

• The number dialed

• When the call was originated

• When the call was answered

• The trunk used

• The end-point the call was connected to

• The number of times this call was attempted

• If present, the actual agent taking the call (depending on whether the call is dialed in reverse or
direct mode, the agent may appear immediately or only when the call connects).

In this list only calls managed by WD are shown, so you can still use your PBX as usual and such
calls will not be displayed.

By the bottom of the page there is a "Details" section, where you see the details for the last item you
selected - be it a call, a campaign to be started, a running campaign or a closed campaign.

For example, here is what you would see by selecting a connected call:

54

And here is what you would see by selecting a running campaign:

Next to the "Details" section there are buttons with possible actions for the item being displayed -
you may for example start and stop campaigns. When you perform an action, a pop-up will be
displayed to confirm that the action was received.

Filters

Right above the live Calls list we can see the "Filters" button that presents the user with the Filtering
panel.

This feature focuses on giving the user the possibility to filter, in an useful way, the data displayed
in the Live Calls Table. Essentially the Live page analyzes the data flowing through the table, and
automatically calculates possible filters that might be of use. These filters include:

• Campaign Runs: Every time a call belonging to a new Campaign Run is analyzed, the filter
system adds a new filter to the Campaign Run filter menu.

• Trunks: The same thing as above goes for new Trunks detected by the Filter System.

• Endpoints: The same goes also for new Endpoints.

• Search: A search bar component has been added, allowing the user to display only the lines
containing the words typed in the search bar.

55

Sparklines

Next to the Filters Button you can see the Show Sparklines button. This button presents the user
with the Sparkline System panel.

For every active Campaign Run detected (where active means that is currently holding at least one
call), the Live Page generates a SparkLine Graph that shows the number of calls over time,
concerning that particular campaign.

If you hover with the mouse pointer over one of the Sparklines, a pop-up label shows you the
number of calls active at that particular moment. If the number of active calls belonging to a
particular campaign reaches zero, the corresponding Sparkline is removed from the page.

Multiple pauses

Finally, next to the Show Sparklines button, you can see the Pause Campaigns button.

This button prompts a pop up that allows the user to select multiple campaigns to be paused. This is
useful if you want to pause all running campaigns in one simple instruction.

The Live page does not work unless the dialer is running (state READY). So if you
try starting a campaign but the dialer is not working, you will see the notification
but nothing will happen.

Campaigns and runs

On the right-hand side of the screen there is a pull-up overlay box made up of three sections plus
one, labeled "Campaigns". It is usually hidden and you have to open it manually in order to see it.

On the right-hand side of the screen there is a panel with:

• Available campaigns: the set of campaigns that can actually be run. As a campaign can be run

56

only once, campaigns that are running and therefore not startable are displayed in italics.

• Running campaigns: these campaigns are running now, or could be running if some condition
was met - e.g. having some more calls appended for IDLE campaigns, or a different moment in
time for WRONG_TIME campaigns

• Recently closed campaigns: here are displayed the details of each recent run

For each campaign run, a color code is used to display the state it is in. You will also see:

• when the run was started (as to distinguish it from other runs)

• the number of calls placed

• an estimate of the current backlog for this run

The section labeled "…" lets you modify the order under which campaigns and runs appear.

The selection you make will be applied to all campaigns and runs while the page is open.

When you select a startable, running or recently closed run you will see a panel showing its details
plus available actions. You can start, pause and remove runs, plus you can control the dialer’s
"boost factor".

Controlling the boost factor

You can manually "tune" the boosting currently applied to a campaign by dynamically setting an
additional factor that will be used to decide how many channels to dial.

The way this works is:

• The number of free agents on a queue will be multiplied by the EP’s boost factor

• The result will be again multiplied by the run’s boost factor. Boost factors below 1 will reduce
the number of available channels, while values over 1 will increase it.

So if you have a queue with 2 idle agents, with an EP’s boost factor of 2, and your current boost
factor on the Live page is set to 1.5, WD will try placing 2 * 2 * 1.5 = 6 calls. If you tune the boost
factor on the Live page to 0.5, WD will only place 3 calls.

When a run starts, its boost factor is always set to 1. In general, you should change the boost factor
from the Live page only in cases where the pattern of answered calls changes strongly during the

57

day. WD is build for unattended operation, so there should be no need to have a person constantly
changing this value.

You will get best results by changing this value slowly and waiting for a while after
each change to let it stabilize. By constantly moving between very high and very
low factors, you will send Wombat into a self-oscillating mode where you will have
a lot of idle agents and a lot of lost calls. In any case, Wombat converges
automatically towards a stable state, so if bad things happen, just wait a couple of
minutes.

Using dynamic lists

Right from the Live page, you can control the lists that are run on a campaign.

You can access this information by clicking on the "Lists" button next to a campaign run details.

You can add new lists to a running campaign, pause and unpause lists on existing campaigns, and
see how far lists were processed so far.

If you stop all lists on a run that does not IDLE on termination, the campaign run
will simply terminate - make sure this is what you want to do.

Please note that if you change lists on a running campaign and reload it, the new lists (or any
removed list) are NOT added or removed from a running campaign. This is an expected behavior
as, by forcing a list reload, you could override the finer list control you have from the Live page
itself. The next time your campaign runs, though, its initial set of lists will be taken from the current

58

configuration.

Using multiple numbers per call

WombatDialer allows you to set additional numbers for a call to be placed. The idea is that if a call
has two additional numbers, the number chosen takes into consideration the current retry, so that:

• The first attempt is always placed on the main number

• The second attempt is on the first multi-number

• The third attempt is on the second multi-number

• The fourth attempt is on the main number again

• The fifth attempt is on the first multi-number

• …and so on

In order to define a multi-number on a call, you need to provide attributes which names beginning
with MULTINUM - eg MULTINUM1, MULTINUM2 and so on. If a MULTINUM is empty or not present,
it is skipped - so it is valid to upload a call with MULTINUM1=123, MULTINUM2 is empty and
MULTINUM3=456.

When reporting on a call where a multi-number was used, it will appear as "123 / 456", where this
means that the call is the one which main number is "123" but the actual number dialed was "456".
Still, the main number will only appear as "123".

Color codes used for live calls

Table 1. Live calls

State Color

RD_RESERVED purple

RD_REQUESTED pink

REQUESTED blue

DIALLING orange

CONNECTED green

TRANSFERRED light green

TERMINATED black

Any other red

A complete description of a call’s life-cycle can be found in A call’s life cycle.

Color codes used for campaign runs

Table 2. Campaign runs

59

State Color

COMPLETED black

ERROR red

IDLE gold

PAUSED gray

RUNNABLE blue

RUNNING green

WRONG_TIME maroon

Any other pink

A complete description of a call’s life-cycle can be found in chapter A campaign run’s life cycle.

The Copy Campaigns Panel
This feature allows you to create a new campaign, using an existing campaign as a template. The
page prompts you to choose an existing campaign and loads its data. You can then modify some
essential data, see the call lists connected to it, remove them , add some existing lists to it or,
eventually, create new lists uploading them from a CSV file. Finally, the page allows you to simply
create the new campaign or, if you choose to, to create it and run it directly.

On the left side of the panel you can see a List Box named “Template”, which contains all the
campaigns available for copying. If you select a template, the Selected Lists Table will be filled by
default with the same call lists and black lists originally tied to the campaign you chose as a
template. Below the Template List you can see the Name text box. This is where you need to specify
the name of the new campaign you are creating. The Email text Field is located right under the
Name Field, this is where you set the email connected to the new campaign. The same thing goes
for the campaign’s DNIS, by typing in the DNIS Text Field located under the Email Field.

In the middle section of the panel, we can see a list containing all the available call lists that can be
attached to the new campaign you are creating. To add or remove these call lists you can use the
control buttons located between the Available Lists Table and the Selected Lists Table.These control
buttons are listed below.

Add list: The green Ok Check button adds the selected list to the Selected Lists Table as a normal call
list. Add blacklist: The red Cancel button adds the selected list to the Selected Lists Table as a
blacklist. Remove List: The black Left Arrow button removes the selected list from the Selected Lists
Table. Create List: The green Plus Button prompts a pop-up containing a Call List creation wizard
that allows you to create a new call list by uploading a CSV file.

Once you have inserted all the data you can save the new campaign by clicking on the Floppy Disk
Button in the bottom right of the panel, or you can save and run the campaign directly by clicking
on the Play Button next to the save button. By doing this Wombat Dialer will open the Live page
Automatically.

60

The Dialer State Page
The new Dialer State page provides the user with more detailed information about the dialer status,
also showing synthetic information about Campaigns, Trunks, Endpoints, Agents and Waiting Calls.

The Wombat Controller Box on the Home Page has been simplified, and a substantial part of the
information has migrated to the new Dialer State Page.

The new page shows different columns containing significant Data. The Endpoints column in
particular, can be clicked upon, selecting each endpoint. If the endpoint type is QUEUE, information
regarding the Agents logged on the queue and the calls currently waiting to be answered.

In order to start seing any data on this page, you need to have a running campaign. If there is no

61

need to actively use them, Wombat won’t try and monitor servers, queues or extensions.

Understanding WombatDialer decisions

If you want to understand what WombatDialer is actually doing, under each running campaign in
the Dialer State page there is an information bar that displays the latest decisions that Wombat took
related to that campaign.

Wombat runs repeatedly for each active campaign run, and based on the state of current calls,
trunks and end-points tries to decide whether more calls should be made. The color bar under a
campaign displays those decisions and lets you understand what Wombat is doing and why it is
dialing or not.

62

To read the graph, you need to find the most common states and read them according to the list
below:

• NO ENDPOINTS FOR RUN: This run does not appear to have any valid end-point configured.

• NO TRUNKS FOR RUN: This run does not appear to have any valid trunk configured.

• NO CHANNELS ON TRUNK: There are zero free channels on trunks.

• NO EP FOUND WITH FREE CHANNELS: No EP has free channels - they are all used. On an EP
of type queue, it might mean that WD is not receiving events from the queue, so it has no way of
knowing when to dial out.

• ALL LICENSED CHANNELS USED: This run cannot temporarily run as there are no free
licensed channels - usually because some other campaign is using them all.

• NO CALLS FETCHED: WD is trying to fetch new calls from lists or recalls, but it’s finding
nothing. Usually appears before campaign termination.

• LIMITED BY EP SIZE: WD would be able to place more calls, but it has to limit itself to the
number of available EP channels.

• LIMITED BY LICENSED CHANS: WD would be able to place more calls if you had a larger
license key.

• LIMITED BY TRUNK RATE: WD would be able to place more calls, but you are asking it not to
overcome a fixed CPS threshold (see Trunk CPS limits).

• LIMITED BY ACTUAL FETCH: WD would be able to dial more calls, but it did not receive
enough calls from the database. If this happens often, increase the batch size settings on your
campaign.

• CALLS NOT NEEDED: No need to place new calls.

• CALLS PLACED: Some calls were placed.

It is normal that not all runs end with some calls placed. Ideally, most runs should
end with CALLS PLACED or NO CALLS NEEDED.

Running campaign reports
You can use WombatDialer to get hands-on details on the activities it performed.

63

Reports are performed per run, so the first thing you have to do is to search a set of runs by
selecting a suitable time period and selecting runs of campaigns that were started within that time
period. Each run is identified by the date and time it was started.

When you click on ">>>", statistics are computed and displayed in the right-hand side of the screen.

You can see:

• The total number of calls placed

• The total talk duration (in seconds)

• The total "wait pre" and "wait after" times (in seconds). "Wait pre" is linked to PBX latency, while
"Wait After" is actual time waiting for a call to be picked up. See Call logs.

• The total conversation time (in seconds)

• The number of calls that were placed on each trunk - trunk names are prefixed with the server
they belong to

• The number of calls that got each specific outcome

By the bottom of the page you can then see a paged list of calls that belong to the set you selected.
You can use the search tool to zoom in on some specific number, and by clicking on the Pencil icon
you can get a complete display of the call logs.

64

Exporting campaign lists

Looking at the list of dialed calls interactively is useful to understand what went on, but sometimes
you want to save the details of all calls into a spreadsheet for later review.

This can easily be obtained by clicking on the "Export to CSV" button - you will get a spreadsheet of
all the calls belonging to your selected runs.

Most spreadsheet packages cannot manipulate more than 50,000 records in a
single file. Though WombatDialer will not enforce this, make sure you avoid
exporting data files that are too large to be usable.

Building new call lists out of run results

When you run a campaign, you usually set reschedule rules so that call can be retried in case of
errors.

Still, it is often handy to operate on a different time-scale so that you can:

• run a campaign to completion

• get the set of calls that would not complete

• reschedule those calls as a separate campaign at a later time

This can be done using the "Export to new list" button on the Reports page.

65

When you click on that icon, calls are counted by their final status, that is the status of the last retry.
For example, if a call was tried at 10AM and got BUSY, and was retried at 11AM and completed
successfully, its final status will be TERMINATED.

As terminal states are not available before this transaction runs, the states you see in the list and
the number of calls for each state are about all possible states of all possible calls within the
selected runs. So it is quite common to find that the numbers of calls actually created is way lower
than the numbers shown, or that a specific state has actually no terminal calls.

We first select a set of runs from the ones we selected in the Reports page, and select a set of
termination codes. Then you enter a name for the new list to be created and click on "Run job".

A new list will be created under the new name and containing the records for the calls you just
selected. In order to see it, you must go to the Lists page (it might be necessary to close the Lists tab
and reopen it).

You can also use this feature to create lists of numbers that were answered
correctly in order to "prune" existing lists of old and invalid entries.

By creating a call list numbers you know to be invalid, you can add it to your
campaigns as a black list so that those numbers will be immediately discarded.

66

Importing and exporting call lists
From the Lists page, you can import and export data to and from call lists. WombatDialer lets you
select either native or CSV format.

Importing call lists - Native mode

By clicking on "Upload list of numbers" when a list is selected, you can copy and paste a set of
numbers to be added to an existing list. As numbers might have associated call attributes, there is
no control over possible duplicate numbers as you may want to dial the same number multiple
times.

Numbers should be uploaded as a set of rows, each starting with the number to be dialed. If you
want to add attributes to be passed to the PBX, you should have them in the format "ATTR:VALUE"
separated by a comma.

For example, the line:

5551234,A:1,B:HELLO

Loads the number "5551234" with attribute A set to "1" and attribute B set to "HELLO".

You can also use a wizard to generate a set of progressive numbers, e.g. generate 1000 numbers

67

from 5550000 onwards. The generator is smart enough to handle the generation of numbers
starting with one or more zeros.

the maximum set uploadable in one batch is about 2Mb, or about 100,000
numbers. It would be advisable to use smaller sets as to avoid causing CPU spikes.

Importing call lists - CSV mode

By clicking on "Upload CSV", you will be able to drag and drop a CSV file containing numbers and
attributes to be added to the selected list. You can easily create CSV files from your favorite
spreadsheet.

You simply drag and drop the CSV file to the yellow box on screen. When done, the file will be read
and previewed.

68

As your CSV file might have different field delimiters, once you have uploaded the file you will be
able to change the delimiters until the file looks right. The numbers to be called will be shown in
red.

After reviewing you file, you can edit any field in the next step of the process. By clicking on the
"Edit Fields" button, you will jump to the fields editor page, through which you can modify the
structure of the CSV data by selecting the field that will represent the “Main Number” field (that is
the number that will be called when campaigns implementing this list will run). You can also
rename eventual fields or decide not to upload some of them in particular.

In order for this to work, your browser must support the HTML5 File API. This
may not work on older browsers.

69

Once you apply the desired change, by clicking on the "next" button, you can go to the final preview
page. Here you will see the results of your CSV customization (if any at all). From here you can go
back to the "Edit Fields" page, or you can upload the file to WombatDialer.

Exporting call lists

You can export a call list in textual format. By pressing on the "Export calls" button while a list is
selected, you get a new text page with data in the format:

5551234,A:1,B:2
5551235,Y:20,X:10
5551236,Y:20,X:20
5551237,Y:30,X:10

All current attributes (inbound and outbound) are reported.

If you click on "Export CSV" the export file will be downloaded as a CSV file.

The License page
You can access the License page by clicking on the "key" icon on the top-right of the WombatDialer
instance.

70

It displays:

• The set of license keys installed on your WombatDialer system. For each license you can see:

◦ The name of the license

◦ The licensee

◦ From when to when this license is valid. Note that you can install immediately a license that
will only be valid in the future

◦ The status of the license

◦ The number of licensed channels

• The total number of licensed channels across all licenses

• The current version of the dialer, when it was built and the versions of the embedded TPF
frameworks.

Installing a new license key

If you get a new license key from Loway, be it a full license or a demo key, it will look like the
following item:

YOURCOMPANYNAME.12345678-23456789

You can install it by clicking on the "Add license key" button and entering the new code. You will
need a working Internet connection from the server, as the new license will be downloaded and
activated. This may take a few seconds to complete.

71

You may also force a check of all licenses by restarting the WombatDialer webapp.

Please note that:

• commercial licenses are additive, this means you can install two 10-channel licenses together in
order to get a 20-channel license (though they will disable previous demo keys)

• demo license are exclusive, this means that they will disable other demo keys as only one can be
active at a given time.

Any disabled keys will appear in state REVOKED (or possibly DISABLED if there is a license
violation issue). Licenses that are past their expiry date will appear as EXPIRED, while licenses that
are not yet active - for example, if you renew a license a month in advance - will appear as
FUTURE, and will automatically become ACTIVE when their time comes.

If a license appears in state W/P (Waiting for license) or ACTIVE_P (Active pending verification), it
means that WombatDialer cannot talk to the licensing server to download, activate or verify the
license key. In this case, if the license was downloaded in the past, the license can be still be used
but only for a a limited period until it is verified, and thence it will display an incorrect expiry date.
WombatDialer tries verifying it up to that point in time, but if that’s not possible, it is shut down.

WombatDialer requires outbound HTTPS internet connectivity to our licensing
servers and cannot run without. See Outbound proxy to know more.

72

QueueMetrics integration
QueueMetrics is a powerful call-center reporting suite that can be used together with WD for
extensive and accurate reporting of the whole call-center activity (inbound and outbound).

QueueMetrics offers:

• strong analytic capabilities, with over 150 elements computed

• live monitoring of agent status

• quality review and assessment of calls

• access to call recordings

• a powerful agent panel

• …and many more features.

QueueMetrics can be found at http://queuemetrics.com

WombatDialer and QueueMetrics do different things, but together can be a very powerful call-
center solution.

• WombatDialer is able to use a Queue as and end-point in order to connect calls to a set of agents

• QueueMetrics is able to monitor extensively the queue and provides a convenient agent
interface that works well with WombatDialer

Installation
Both QueueMetrics and WD can be installed on the same server, that may or may not be the same
server running the PBX. If installed automatically through yum, they will share the same Tomcat
instance.

As QueueMetrics is a CPU- and memory-intensive application (as you could run reports on millions
of calls at once) it might be better to put each application on its own virtual or physical machine in
order to avoid slowing down WD - for which timely responses to what is happening on the PBX are
paramount.

Understanding QueueMetrics integration
In order to turn on QueueMetrics integration, you simply need to enable the "QM_COMPATIBLE"
logging option for WD campaigns. This will tell WD to produce a log on each Asterisk system that
closely resembles the one created by inbound calls on queues.

This log will be created with the following peculiarities:

• the name of the queue is the name of the campaign - that is the name that needs to be
configured in QueueMetrics

• the "agent" name answering the call corresponds to the end-point being used to place the call

73

http://queuemetrics.com

• the extended call status reported to WD will be logged

• attributes will be logged (see below)

• all calls have the TAG set as their list

The most common case of QueueMetrics integration happens when you use an end-point of type
QUEUE to have outbound calls routed to agents through a queue. In this case, you will have two
different queue entities producing data for QueueMetrics:

• The queue that matches the campaign: here you will see all calls that WD attempted - the
successful as well as the unsuccessful ones. This is basically the activity that WD performed and
the actual telephone usage durations. In a real-life scenario, the vast majority of calls will be
unanswered.

• If you run a report for the physical queue used, you will see information about calls that were
successfully connected and were actually queued. You would expect to have a very low
unanswered rate here - if it is high, it means something is not working as expected. You will of
course have some lost calls, e.g. because the called person hung up before the agent was
connected.

The difference between the number of successful calls in the campaign versus the total number of
calls in the physical queue is due to calls that were hung-up before reaching the queue, e.g. during
an initial IVR phase.

When you use a queue for inbound, it is often better to avoid playing music-on-
hold and to offer ringing instead.

Logging of attributes

Attributes can be logged to QueueMetrics as IVRs, FEATURES and and VARIABLES.

• Features are ideal to track specific yes/no actions in the call

• IVRs are perfect to track IVR sequences, and will be extensively reported by QueueMetrics

• VARs are perfect for unstructured data you want to see associated to a call.

As you generally do not want all available attributes to be sent to QueueMetrics, you have to
cherry-pick the ones you want logged by entering them in the Attributes to be logged as QM
variables field in the Campaign definition.

In order to determine how an attribute is to be logged, you will prepend the name of the attribute
with a sigil specifying the way it is to be logged.

• No sigil: the attribute is a VAR

• Dollar ($) sigil: the attribute is a feature

• Bang (!) sigil: the attribute is an IVR

So in the following set of attributes:

74

NAME $MYLIST OPTION !MYIVR

The attributes NAME and OPTION will be sent as vars, MYLIST will be a feature and MYIVR will be
an IVR.

All call attributes can be logged; so everything that comes from the current list, plus campaign
attributes, plus incoming attributes read from Asterisk. Attributes are logged at the beginning of the
call and when the call is disposed (if changed). The call tag is automatically logged and matches the
list name.

Logging of attributes on direct queue end-points

If WD is working with a queue in direct mode (that is, when calls are sent to agents by the queue
and not by WD itself), and QM integration is turned on:

• As soon as the "synthetic" call is started, or when attributes are set, then they will be logged on
the synthetic call. This works for reporting, but is not useful if you have agents using
QueueMetrics who are working on the queue.

• As soon as an agent is connected (but no sooner), all previous attributes are logged on the queue
as well. So in QueueMetrics, they will be available for screen pops or in general on the agent
page. This happens automatically.

Any attributes set after an agent is connected will be logged to both calls.

Real-time monitoring
You will be mostly interested in monitoring only the physical queue - here actual agent activity is
displayed, and agent presence information (log-ins, log-offs and pauses) is immediately available.

As all calls have their TAG set as the originating call list, it is easy to see the relative efficiency of
lists.

Reporting
You might be interested in running reports on both the campaign and the physical queue in order
to gather information on actual PBX usage times versus agent activity.

Using the agent’s page
QueueMetrics offers an interesting Agent’s page, from where the agent can get a screen pop to an
external application (e.g. a CRM) when they receive an inbound call.

If you use the telephone number as the main key that is used to connect to an external CRM, then
this will work natively with the basic WD integration, as the caller-id us usually preserved.

You may want to have finer control on the CRM pop-up by tracing not only the number dialed, but
also the campaign ID or some of the variables that WD sends along the call. This can be achieved by

75

rewriting the caller-id field in Asterisk and using a decoder script that will in turn launch the actual
CRM application. An example can be found in the Cookbook.

Using the agent’s page for preview dialing

WombatDialer includes an HTML preview panel that lets your agents preview, process or skip calls.

It can be reached at the URL http://myserver:8080/wombat/agents/rd_pop.jsp and accepts the
following parameters:

• agent: the channel being used, as present on the queue. It must match exactly the Asterisk id.

• url: an URL that can be opened for this call. Note that special characters must be quoted, e.g. "?"
must be written as %3F and "&" will appear as %26. Any variables will be quoted when written
like "<NUMBER>"

• inset: if 0, the page will display a list of known variables for this call and a link to the URL. If 1,
the URL will be opened within an IFRAME right in the page.

• baseUrl: if Wombat displays a timeout trying to display this page, then you must set this
parameter to the default URL for Wombat as seen from Wombat itself, e.g. http://127.0.0.1:8080/
wombat

For example, to have calls opened from the agents' page in QM, you would use one of the
programmable buttons to link to WD, like in:

realtime.agent_button_1.enabled=true
realtime.agent_button_1.caption=Wombat
realtime.agent_button_1.url=http://10.10.5.30:8080/wombat/agents/rd_pop.jsp
 ?agent=SIP/[a]
 &url=http://10.10.5.31/sugarcrm/index.php%3faction=UnifiedSearch
 %26module=Home<%26query_string=<NUMBER>%26name=<NAME>
 &inset=1

The code above will link to WombatDialer on 10.10.5.30, will replace the agent code in the URL and
will link to an embedded instance of SugarCRM running on server 10.10.5.31 passing along the
number to be called.

Using the agent’s page for regular dialing

WombatDialer includes an HTML panel to inquire/display the status of a live call. This integrates

76

http://myserver:8080/wombat/agents/rd_pop.jsp
http://127.0.0.1:8080/wombat
http://127.0.0.1:8080/wombat

nicely with QueueMetrics, as QueueMetrics allows for recalls to be scheduled right from the Agent’s
page.

It can be reached at the URL http://myserver:8080/wombat/agents/rd_pop.jsp and accepts the
following parameters:

• agent: the Agent’s identifier.

• wid: the WombatID. It can be written with a prefix (as it appears in QM logs) or without them.

• unqid: the Asterisk UniqueID for the call.

For example, you could use a Queue URL like the following:

http://myserver:8080/wombat/agents/live_call.jsp?agent=[A]&wid=[U]

To have the page opened in Icon. If you are taking the ID from an entry that is logged by Wombat
you should use the "wid" code; if instead you are reading from a genuine app_queue entry you
should use "unqid" instead.

77

http://myserver:8080/wombat/agents/rd_pop.jsp

A WombatDialer Cookbook
This section of the manual contains a few examples of WombatDialer deployments that show
common usage patterns.

Table 3. Recipes

Title Diff. EPP EPQ API NOT ATT INP EVT TTS QM

Social
Media
Dialer

* X X X

Helping
Womba
ts

* * X X X X

Outbou
nd IVR

* * X X X X X X

Queue
Metrics
integrat
ion

* * * X X X

Queue
call-
backs

* * X X X

Underst
anding
Queue
EP

* * X

Automa
ted
Recalls

* * X X X

Previe
w
Dialing

* X X X

Answer
ing-
machin
e detect

* * X X

Diff

The level of difficulty - * Beginner - * * Intermediate - * * * Advanced

EPP

Uses PHONE end-points

78

EPQ

Uses QUEUE end-points

API

Shows HTTP APIs

NOT

Shows HTTP notifications

ATT

Shows call attributes

INP

Importing and exporting call lists

EVT

Call events

TTS

Using Text-to-Speech engines

QM

QueueMetrics integration

A social media dialer
Let’s imagine that we work for ACME Social, a company that specializes in tracking the success of
its clients on social networks like Facebook or Google+. So, every time someone befriends one of
their clients, we want WombatDialer to call the client telling them their current number of friends.
The call would say something like "Hello ! Customer 1234 has 127 friends. Goodbye!"

This example shows a couple of features that are not trivial to implement on most dialers, notably:

• The message will be customized with a number of parameters, so that each client receives a
personalized version and not just a pre-recorded note

• The dialer starts calling on-demand when something happens and handles reschedules
internally

In order to implement this, we start by editing the Asterisk dialplan and create a couple of new
contexts. The first one is called "telecast" and is used to generate the message being played:

79

[telecast]
exten => 100,1,Wait(1)
exten => 100,2,Answer
exten => 100,n,Playback(hello-world)
exten => 100,n,Playback(agent-loginok)
exten => 100,n,SayDigits(${user})
exten => 100,n,Playback(vm-youhave)
exten => 100,n,SayDigits(${friends})
exten => 100,n,Playback(vm-Friends)
exten => 100,n,Playback(vm-goodbye)
exten => 100,n,Hangup

As you can see, the context above introduces two channel variables ${user} and ${friends} that are
placeholders for the user-id of our client and the number of friends they currently have.

As a convenience when testing, we want all numbers dialed during the test phase to actually dial
our own SIP phone; to do this we create a new context called dialout that routes any number to our
extension:

[dialout]
exten => _X.,1,Dial(SIP/500)
exten => _X.,n,Hangup

We reload Asterisk to pick up the dial-plan changes. Then we log-in in WombatDialer and configure
it, so that:

• AS is our Asterisk server

• We create a trunk called "Out" on server AS that points to our telephone. We enter
Local/${num}@dialout as its dial string and set its capacity to 1 (so we never receive more than
one call)

• We create an end-point called "Msg" on our server AS with extension 100@telecast and a
capacity that is enough for the campaign - let’s say 10 lines.

Your configuration will look like the following screenshot:

80

At this point, we create a new List called "Test" and add only one number to it; you may enter the
number as:

0916300000,user:10,friends:100

This uploads the number and associates the variables "user" with value 10 and "friends" with value
100.

Then we create a new campaign - this is where all the pieces are tied together:

• We set its name as "Runme" - avoid long names or spaces if you plan to control it externally

• We set its priority to 10 - the priority is the order in which campaigns are queued when trying to
assign free lines. A campaign with a lower number will run first, while campaigns with the
same priority will have a fair share each.

• We set "Idle on termination?" to Yes - this way this campaign will not just stop when it is out of
numbers but will wait for more.

• We set "Additional logging" to "QM compatible" so that you may use QueueMetrics to keep track
of it.

After saving the campaign, we select it and then add:

• Trunks: Out

• Endpoints: Msg

• Lists:Test

As you can see, a campaign can have multiple trunks, multiple end-points and multiple call lists,
and they may be shared between multiple campaigns.

It would be fair to add some rescheduling rules as well - for example, if we do not get an answer
within 30 seconds, we want the system to retry placing the call exactly once after two minutes.

81

In the end, you would get a situation similar to the one here:

At this point we’re ready to go:

• make sure that the WombatDialer engine is turned on (from the Home Page, click on the "Play"
icon)

• go to the "View Live" page and select our campaign "Runme" under "Available campaigns"

• click on "Start"

If all goes well, within a few seconds you should receive a call to your SIP phone telling you that
user 10 has 100 friends. Hooray!

After this, you should see your campaign being shown on the Live page in gold, with status IDLE;
now, when our internal tracking system detects new friends for one of our valued customers, all it
needs to do is to send a HTTP request to the WombatDialer, like we would manually from the
command line:

curl "http://server:8080/wombat/api/calls/index.jsp?
 op=addcall&campaign=Runme
 &number=0916309765&attrs=user:107,friends:123"

If you do, in a few seconds the dialer will send this new call. You can send all the calls it needs to
place, one at a time, and it will try scheduling them as soon as possible given the current system
conditions, running campaigns and available outbound lines.

Now, if you want it to actually dial out and not just call our SIP phone, edit your Trunk "Out": set the
dial string to something like SIP/myprovider/${num} and set its capacity as the total number of
parallel calls you want to place. Then go to the Live page and reload the campaign.

When you want to stop the campaign, you have two choices:

• You can temporarily pause it

82

• You can remove it from running campaigns when it is paused

Of course, you can have this campaign run on multiple trunks and multiple endpoints, using
multiple separate Asterisk servers, just by creating the relevant items and telling the campaign to
use them. This way, handling hundreds of channels is just as easy as testing with your SIP phone!

Further evolution:

• You could create your own audio recordings - the example here was created with sounds
present in a standard Asterisk distribution, but of course you should record your own messages.

• You can do even better and embed a Text-to-Speech engine script, so you are not limited to
inserting numbers but can play back nearly anything

• You can add an IVR option to the "telecast" context, so that if the callee wants to talk to a live
person, they are sent to a queue. By monitoring the number of lines that you are using on your
trunk and the number of available agents, the WombatDialer acts as a simple progressive
dialer.

• As all the configuration is GUI-agnostic, you can use your favorite Asterisk configuration GUI to
create End-points - play messages, read IVRs, add time-dependent rules like you would for
incoming calls. All you need to know is the point in the dialplan that they start from - e.g.
internal number 123 in FreePBX is always available as 123@from-internal.

• You can optionally add an Active Period to the running campaign, so that calls on it are placed
only - say - between 9 AM and 6 PM no matter when the messages are queued.

Helping Wombats one carrot at a time
You know how it goes; so many good ideas in real-life end up being limited by the amount of funds
you can raise to implement them. That’s why Vicky, the energetic new president of "Friends of the
Wombat", called you. "Friends of the Wombat" is a nonprofit institution that helps wombats in
need, but their activities are limited by the rising cost of carrots; so they decided to start a volunteer
fund-raising campaign.

What they would like to do is to call a list of known contacts that expressed an interest in wombats
and ask them to make a donation. They started doing this manually with paper and pencil, but
getting to a lead is really tiring and time-consuming - their volunteers spend most of the time
dialing numbers and it is really hard for them to get through to somebody who is interested.

After a good cup of green tea, what you propose to do is to use WombatDialer to automate the
process by dividing it into multiple stages:

• Create an electronic list of those leads

• Leads from their list are dialed

• If the call is answered, a message is played that explains what the campaign is for

• If the callee is interested, they press 1 to be put in conversation with a volunteer that will
explain how to send a donation.

This setting leads to two huge efficiency boosters:

83

• As numbers are dialed automatically and error conditions are handled behind the scenes, a lot
of drudge work with paper and telephone keyboards is automated; no more post-it notes to
recall a busy number!

• As they noticed that about 50% of the calls made manually result in calls to busy numbers or
numbers where nobody picks up, and that only 50% of the callees are actually interested after
an initial interview, they expect that 75 calls out of every 100 they make can be screened out
automatically. So if they have 4 volunteers on shift, WombatDialer could start 16 calls at once on
average, and have all of our volunteers busy most of the time with people who are actually
interested in contributing.

In order to implement such a campaign with WombatDialer, we start by creating a call queue that
will hold our agents and will send them calls. You can use any Asterisk GUI to do this - in the
example below we use Elastix, but you can choose the one that suits you best.

We go to Queues → Create new, set the extension for the queue as 999, enter any name you want,
and look on the settings below so that:

• Strategy is set to "rrmemory"

• Queue events: yes (this is very important - if you don’t do this Wombat won’t be able to observe
your queue at all).

• Autofill: yes (all free agents are assigned calls at the same time)

If you create a queue manually without using a GUI, configure it with the parameters below so that
WombatDialer can observe it.

[999]
autofill=yes
eventmemberstatus=yes
eventwhencalled=no
maxlen=0
strategy=rrmemory

Now we create a custom piece of dialplan to be called as an end-point for calls that connect
successfully.

[friendscampaign]
exten => 100,1,Answer
exten => 100,n,Playback(campaign_message)
exten => 100,n,Read(type,,1)
exten => 100,n,GotoIf($["${type}" = "1"]?ok)
exten => 100,n,Goto(1)

exten => 100,n(ok),UserEvent(CALLSTATUS,Uniqueid:${UNIQUEID},V:1)
exten => 100,n,Queue(999,,120)

(In order to make this example shorter, we assume you have a basic familiarity with WombatDialer
concepts such as Campaigns, Servers, Trunks and End-points.)

84

Now log-in to WombatDialer and create a new End-Point:

• Type: QUEUE

• Queue: 999

• Max channels: 10

• Boost factor: 2.0

• Max waiting callers: 2

This means that WombatDialer will try and place two calls for each agent available, but never more
than 10, and will stop placing calls if there are two or more people waiting in queue. We expected to
use a boost factor of three to four given the previous statistics, but it is better to start with a small
figure and grow it if needed.

It is important to understand the impact of different boost factor settings; in general having more
calls made than agents may result in calls waiting in queue when all of your agents are busy (in
call-center parlance this is usually referred as "nuisance calls"). WombatDialer tries to minimize the
impact of this case by continuously monitoring the number of calls waiting on the queue and
avoiding placing new calls if there are too many. If you don’t want to have cases where calls are not
immediately connected to an agent, you should leave the boost factor to 1, that is, place no more
calls than available agents. The trade-off here is that agents end up being underused, as they have
to wait for a successful call to come in.

We then create a test trunk, upload a list of test numbers and create a campaign called "friends" as
in the previous examples; we now start the dialer and start the campaign from the Live page. When
we start running it we notice that it does not seem to work - the campaign is running but no calls
are placed. How comes?

If we reload the current Dialer status, we see that it is saying that the queue has 0 channels
available - this is because there are no agents on the queue.

If we log an agent on (e.g. by entering 999* on Elastix), we will notice that WombatDialer starts
dialing. If you pause an agent or log him off, WombatDialer will immediately react and adapt to the
changed number of available end-point channels.

Another thing that we do is to track (through a status code) which callers ask for being put in
contact with a volunteer - this allows easy inspection of what goes where from the Campaign
Report panel.

Now all we have to do is to set our campaign to use an actual telephone trunk and upload the "real"
list of numbers and we are ready to go - it’s time to buy some new carrots for our wombats!

Understanding statistics

If you run a report of our campaign with a queue analyzer like QueueMetrics, you will have two
different views of the campaign:

• if you analyze the queue "friends" (the one that matches the name of your WombatDialer
campaign) you will see the total "external" system activity - all calls placed on the campaign are
tracked, and the wait time matches the external wait time (that is, the time between the dial

85

request and a successful connect). All calls appear to be connected on the end-point, as you
could have multiple ones assigned to the same campaign.

• if you analyze the queue "999", you will see the human side of action - how many calls were
queues for humans to interact with, how fast they were answered and by whom.

Further expansion

• You can use the same end-point in multiple parallel campaigns, if needed.

• It is possible that your campaign reaches someone who is interested but is currently doing
something else so does not have the time to speak to your volunteers. They could tell you by
hitting 2 - you could add a Reschedule Rule that reschedules the call in a few hours.

• You could easily generate personalized messages instead of one single recorded message by
using a Text-to-Speech synthesizer

Please note that outbound telemarketing, whether it is of the good or evil persuasion, is regulated
by your local law, so be sure you comply to its terms before you start calling millions of people!

Outbound IVRs and dr. Strangelove
A Dr. Strangelove just called, saying he needs your help for an automated appointment reminder
system. Dr. Strangelove is tired of patients forgetting appointments, so he needs a way to call them
the day before and making sure they will be there at the right time. Also, as he specializes in every
possible thing, he needs to know what the appointment will be about so he can either have an
operating room ready to remove your appendix or his psych couch cleaned and stocked with a
large supply of paper towels. Do you think you can help?

After calling him, you understand that he wants a system that will not only connect to a list of
numbers and handle common issues (busy calls, non-answers, etc) but also a system that is able to
detect whether the callee actually confirms receipt of the message. If they do, that’s okay; if they
don’t, a new call is placed after a while.

He also wants a system that is able to synthesize a custom message for each call, and that is able to
gather data from the callee and pass it along to his office management system as it is collected.

Doing this with WombatDialer is easy; it is basically a matter of implementing an outbound IVR and
tracking call parameters and call completion codes. Doing so will also let us show how
WombatDialer handles call retries. As an added bonus, we’ll see how WombatDialer notifies other
systems over HTTP.

To get us started, we create a list of telephone numbers called "Appointments" with custom
attributes; in order to do this, we log in to WombatDialer, go to the Lists page and create a new list.
After creation, we select it and upload a list of numbers like the following one:

5551234,HH:10,MM:30
5556785,HH:11,MM:00
5552012,HH:11,MM:30

86

This means that the person at number 5551234 is to be reminded an appointment for tomorrow at
10:30. We use two separate variables as this makes life easier for our Text-to-Speech engine.

We now have to program the outbound IVR context in Asterisk; we can do that easily with the help
of WD call attributes so that we know what we have to tell our customer. In this example, we will
also use the Google Text-to-Speech engine to synthesize audio on-demand.

87

[drstrangelove]
exten => s,1,Answer
exten => s,n,Set(TIMEOUT(response)=5)
exten => s,n,UserEvent(CALLSTATUS,Uniqueid:${UNIQUEID},V:0)
exten => s,n(start),agi(googletts.agi,"Your appointment with doctor
 strangelove is for tomorrow at ${HH} ${MM}")
exten => s,n,agi(googletts.agi,"Press 1 for to book for major surgery
 press 2 for psychiatric counseling.")
exten => s,n,Read(type,,1)
exten => s,n,GotoIf($["${type}" = "1"]?appe)
exten => s,n,GotoIf($["${type}" = "2"]?psyc)
exten => s,n,Goto(start)

exten => s,n(appe),UserEvent(ATTRIBUTE,Uniqueid:${UNIQUEID},APPT:APPE)
exten => s,n,agi(googletts.agi,"You choose the appendectomy.")
exten => s,n,Goto(confirm)

exten => s,n(psyc),UserEvent(ATTRIBUTE,Uniqueid:${UNIQUEID},APPT:PSYC)
exten => s,n,agi(googletts.agi,"You choose psychiatric counseling.")
exten => s,n,Goto(confirm)

exten => s,n(confirm),agi(googletts.agi,"Thank you! Now press 1
 to confirm the appointment")
exten => s,n,agi(googletts.agi,"or 2 to cancel it.")
exten => s,n,Read(conf,,1)
exten => s,n,GotoIf($["${conf}" = "1"]?ok)
exten => s,n,GotoIf($["${conf}" = "2"]?ko)
exten => s,n,Goto(confirm)

exten => s,n(ok),UserEvent(CALLSTATUS,Uniqueid:${UNIQUEID},V:1)
exten => s,n,agi(googletts.agi,"The appointment was confirmed.
 See you tomorrow.")
exten => s,n,Hangup

exten => s,n(ko),UserEvent(CALLSTATUS,Uniqueid:${UNIQUEID},V:2)
exten => s,n,agi(googletts.agi,"Boo the appointment was canceled.")
exten => s,n,Hangup

Notable points in the code above are:

• Custom call attributes HH and MM are passed along with the phone number so we can know what
to tell each client.

• We set the call status to "0", "1" or "2". "0" means that the call was connected but no choice was
made, "1" means that the appointment is confirmed and "2" is that it is canceled

• We generate some UserEvents in order to populate the outbound (that is, coming from
outbound) attribute APPT with the patient’s choice

We now have to create an end-point for our campaign that points at extension s@drstrangelove so
that WombatDialer knows where to connect successful calls. We will also need at least one trunk to

88

send calls through - to get us started it is advisable to have a "dummy" trunk routing everything to a
local extension.

If you have not already done so, it would be advisable at this point to have a look at our previous
tutorial - A social media dialer - to see how to create and control a simple campaign.

When done, we create a new Campaign to connect all pieces together.

We set the campaign to be idle on termination, so that we can add more numbers over HTTP when
they become available. We also program it to be running only between 8AM and 6PM, every day of
the week, so we don’t call people in the middle of the night if a nightly job is used to load new
appointments every day.

We also set a forced closure after 90 seconds so that if the call exceeds a duration of 90 seconds, it is
automatically hung up to prevent using valuable resources on a call that is likely invalid.

As a last measure, we set the logging format to QM_COMPATIBLE (so that we can observe activity
via QueueMetrics) and enter the HTTP notification URL of Dr. Strangelove’s office management
system to be notified of call events (see below for more information).

We then complete the campaign by adding a trunk, our new end-point with the outbound IVR and
our Appointments list.

As a last step, we create a set of Reschedule Rules that implement the retry logic.

• If the call is unanswered, busy or in error, we retry every 300 seconds for up to five times.

• If the call times out because of a forced closure, we retry after 120 seconds.

• If the call completes naturally but its extended status is 0 (no choice), we retry it for up to three
times after 300 seconds each.

• If a call completes naturally but its extended status is not 0, then it is not retried.

89

Now it is time for us to start the campaign - make sure the WD is running, go to the Live page, select
your campaign and run it. If all goes well, you should start receiving calls on your test extension.

While the campaign is running, you can add more calls to it via HTTP by issuing:

curl "http://server:8088/wombat/api/calls/index.jsp?
 op=addcall&campaign=AppRemiders&number=45678
 &attrs=HH:12,MM:15"

and you can even specify a minimum time for calls to be placed at, like e.g.

curl "http://server:8088/wombat/api/calls/index.jsp?
 op=addcall&campaign=AppRemiders&number=45678
 &attrs=HH:12,MM:15
 &schedule=2012-06-01.10:00:00"

When the campaign terminates, it will be in IDLE state. In order to close it, first pause and then
remove it.

After a successful run, you can see its statistics, by viewing the Campaign Report screen:

90

You will see that some calls appear as TERMINATED 0, some as TERMINATED 1 and some as
TERMINATED 2, based on the extended call status entered through a user selection. Only calls in
state TERMINATED 0 are retried.

You can also see the state of attributes for each call by going to the List editor:

You see that calls successfully placed will have an APPT attribute that is either APPE or PSYC; also you
will see a complete log of activity for each number.

As a last item, you’ll remember we enabled HTTP notification. This basically POSTs the result of
each call to a HTTP server, where you could have a simple PHP script to parse it, like in the
following example:

91

<?
$out = "";
foreach($_POST as $name => $value) {
 $out .= "$name:$value ";
}
print($out);
error_log("RQ: $out",0, "", "");
?>

The script above basically logs all activity on the HTTP error log. What you get is a sequence of calls
like:

RQ: num:5551234 reschedule:0 I_MM:30 extstate:
 state:RS_REJECTED I_HH:10 retry:0
RQ: num:5556785 reschedule:0 I_MM:00 extstate:
 state:RS_REJECTED I_HH:11 retry:0
RQ: num:5552012 reschedule:0 I_MM:30 extstate:
 state:RS_REJECTED I_HH:11 retry:0
RQ: num:5551234 reschedule:0 I_MM:30 extstate:1
 state:TERMINATED I_HH:10 O_APPT:APPE retry:0
RQ: num:5556785 reschedule:300 I_MM:00 extstate:
 state:RS_NOANSWER I_HH:11 retry:0
RQ: num:5552012 reschedule:0 I_MM:30 extstate:2
 state:TERMINATED I_HH:11 O_APPT:PSYC retry:0
RQ: num:5556785 reschedule:300 I_MM:00 extstate:0
 state:TERMINATED I_HH:11 retry:1
RQ: num:5556785 reschedule:300 I_MM:00 extstate:0
 state:TERMINATED I_HH:11 retry:2
RQ: num:5556785 reschedule:300 I_MM:00 extstate:0
 state:TERMINATED I_HH:11 retry:3
RQ: num:5556785 reschedule:0 I_MM:00 extstate:0
 state:TERMINATED I_HH:11 retry:4

You see that for each call:

• num is set to the number dialed

• state is the call state at its completion

• extstate is the call’s extended state, if present

• retry is the retry counter

• reschedule is set to the time to be waited before a reschedule; if no reschedule is necessary, it
will be set to zero

• all inbound attributes (the ones you set with the telephone number) are passed along
prepended by I_

• all outbound attributes (the ones you read from the callee), if any, are passed along prepended
by O_

92

This way you can easily create an integration script that stores the results of the call on a database
or passes them along for further processing.

Further developments

• By connecting multiple trunks and end-points residing on multiple servers you can scale this
example up to hundreds of parallel lines

• If you have clients living in different time zones, you could have multiple campaigns active with
different time windows to place calls

• It is often a good idea to set call attributes that are not actually used by Asterisk (e.g. a patient
ID) but make life easier for third-party systems to find out what the call was about.

The Google-TTS script used is available at: http://zaf.github.com/asterisk-googletts/

Understanding queue end-points
An end-point of type queue in Wombat tries to determine the number of available channels based
on the number of available agents on the queue it is observing. An agent is considered available if it
is logged on to the queue, is not paused and is not currently in conversation.

After getting the number of available agents, it multiplies it by the "boost factor" (that is used to
account for the success rate in connecting the numbers to be dialed) and tries to schedule as many
calls. Therefore, if you have e.g. 7 available agents and a boost factor of 1.3, it will try to connect to 9
numbers at once (7 x 1.3 = 9.1).

It will also enforce two limits:

• If there are more than "max waiting calls" waiting on a queue, it will not try and place new calls
- in theory there should never be calls queued, as they follow the number of available agents,
but it is possible that either some agent logs off after being counted to place calls or some calls
reach a queue without passing through Wombat. This also acts as a counterbalance to high
"boost factor" values.

• it will never place more than "max channels" calls on the queue - this lets you use a shared
queue where some calls come from inbound activity and some come from Wombat itself. Of
course you can turn this off by setting "max channel" to a value higher than the total number of
agents on the queue.

It is also important to notice that the queue is used only as a way to know how many calls can be
placed on a queue, but calls will still be transferred to a point in the dial-plan that should lead to the
queue. This lets you execute dialplan logic (e.g. playing pre-recorded messages or running IVRs) on
the calls it just placed.

In order to use WombatDialer effectively with a queue, the following guidelines are best followed:

• though Wombat would work with static member channels, if you want your calls to go through
to agents who may or may not be available (e.g. some days they may be sick) it is strongly
advisable to use dynamic agents who log on and off from the queue.

• as an agent cannot be physically available at all times during the day, it is important that they

93

http://zaf.github.com/asterisk-googletts/

have a way to pause themselves, be it to run "wrap up" activities after calls or to take breaks.
The QueueMetrics web interface offers an excellent panel that lets you add pause codes as well

• the queue must provide events to Wombat about agent activities. On modern Asterisks (12+) it
works natively; if not, you must set eventswhencalled=true, otherwise the queue will be
unobservable. It is also important that extension presence is correctly observed - e.g. if an end-
point is busy because the agent is doing a personal call, its queue status should immediately
reflect this. Whether this happens or not on your system is a matter of Asterisk version and type
of channel that is used to reach the agent - with recent versions of Asterisk and SIP channels
this should work automatically.

• the queue should connect calls to agent as efficiently as possible when there are multiple calls
waiting and multiple available agents, so it should have the "autofill" option set to true.

In order to run a campaign with a Queue endpoint, it is best to:

• create a campaign with a Queue endpoint. You may create it IDLE and add no call lists, so the
campaign does not actually do anything until fed some numbers.

• run that campaign

• reload the Dialer status in order to see if the queue is being observed (you have to click on the
reload icon manually each time).

• If the queue is present, you should see it something saying "Free 4 of 7 W:2". This means that
WD is seeing 7 agents connected of which 4 are free (where 4 is the result of multiplying the
actual number of observed channels by its boost factor), and that there are 2 calls waiting on
the queue.

• try and log on, log off, pause and unpause an agent. You should see the number of free and
available channels change accordingly. Try also sending calls to the queue and see if the
number of free agents and of waiting calls is correct.

• try also placing calls from some agent extensions and see if the number of free channels reflects
this correctly.

• if you plan to have agents working on multiple queues at once, run the tests above while the
agents are logged on in at least two queues and make sure statues are updated correctly.

94

The Queue EPs let you use WD as a powerful progressive dialer and can lead to very complex
integration scenarios, but as it involves actual people being called and answering the phone, it is
better to understand it well before actually using it in production.

A custom QueueMetrics integration
The WombatDialer can be used as a stand-alone product for message broadcasting, but it was built
to integrate easily with QueueMetrics, the premier call-center monitoring and reporting tool for the
Asterisk PBX. WombatDialer and QueueMetrics do different things, but together can be a very
powerful call-center solution.

• WombatDialer is able to use a Queue as and end-point in order to connect calls to a set of agents

• QueueMetrics is able to monitor extensively the queue and provides a convenient agent
interface that works well with WombatDialer

In this example, we improve the scenario described in a previous tutorial - Helping Wombats one
carrot at a time - imagining that the want to:

• use a custom CRM interface so that agents can immediately see the name of the person being
called and can open up an external CRM application for each client so they can gather donation
data

• monitor each agent’s performance

• use a dynamic list of people to be called so that as soon as you know of an interesting lead, you
can add it to the list of persons to be called.

You can have WombatDialer and QueueMetrics installed on the same server, unless you have a
very high load or a very high number of lines.

As a first step, we’ll have to create a small interface script that will be our CRM application. We will
call it wombatPopup.php and will store it on one of our servers as http://10.10.5.10/lenz/
wombatPopup.php

Plain WombatDialer Agent Panel<hr>
<?
$number = $_REQUEST["caller"];
$agent = $_REQUEST["agent"];
$unique = $_REQUEST["unique"];

preg_match('/#(\d+)\s(.+)/', $number, $matches);
$id = $matches[1];
$name = $matches[2];
?>

Person is: <?= $name ?> (ID #<?= $id ?>)<p>
Agent is: <?= $agent ?> <p>
Call unique is: <?= $unique ?>

This page basically displays the person’s name and ID, so we can display it immediately - or this

95

http://10.10.5.10/lenz/wombatPopup.php
http://10.10.5.10/lenz/wombatPopup.php

could redirect to an external CRM application.

At the Asterisk level, if you have not already done so, create a queue "999" with the correct
parameters to be monitored by Wombat - see Understanding queue end-points . Then edit your
extensions_custom.conf file so that you have an extension "1235" that leads to the queue:

[from-internal-custom]
....
exten => 1235,1,Answer
exten => 1235,n,Set(CALLERID(num)=#${ID} ${PERS})
exten => 1235,n,Goto(from-internal,999,1)

This rewrites the incoming caller-id for the queue to e.g. "#1234 John_Doe", so this is what the agent
sees - even before the agent pop-up is opened. This also is recorded in QueueMetrics, so this is what
you will see when you run call reports. Note that if you run FreePBX you cannot call the queue
directly using the Queue() command but you’ll have to go through its dialplan in order to have all
parameters correctly set.

In QueueMetrics, set the following properties in configuration.properties:

realtime.agent_autoopenurl=true
default.crmapp=

Then create a queue "999" and set its Queue URL to:

http://10.10.5.10/lenz/wombatPopup.php?caller=[C]&unique=[U]&agent=[A]

This tells QueueMetrics that it has to enable a screen-pop for calls coming in through that queue.

Now log on to WombatDialer; create an EndPoint of type Queue set for queue 999, and its entry
point in the dialplan to 1235@from-internal-custom . Do not forget to set the "Boost factor" to 1 and
the "Maximum queue length" to 2.

96

Then create a campaign called "QmSample" that idles on termination.

97

Set the trunks, the EP we just created, add no lists and define any reschedule rules you need. The
end result should look like the following:

98

Now start the campaign. It will go in status IDLE immediately, as it has no numbers to dial, and you
will see it all yellow in the Live page of WombatDialer.

At this point, it is time for your agents to log in in QueueMetrics. Have them log-in to their Agent’s
page, and from there log them on to queue 999. At this point, make sure that each agent’s browser
allows QueueMetrics to open pop-up windows (this is usually disabled in modern browsers).

Now, for each call you’d like to be started, send an HTTP request to WombatDialer that looks like
the following one (we do this through the Linux shell, but there is nothing preventing you to script
this in some other way:

curl "http://10.10.5.18:8080/wombat/api/calls/index.jsp
 ?op=addcall
 &campaign=QmSample
 &number=2000136
 &attrs=ID:2301,PERS:John_Doe"

Note that you associate two parameters: ID that is a unique id used by your CRM and PERS that is
the called person’s name. You could also add additional parameters you may need, e.g. a person’s
class or their telephone number.

What happens now is that when the call goes through, its caller-id is rewritten as "#2301 John_Doe"
as soon as it reaches Asterisk. When your agent receives the call, they will reload the agent’s page

99

and the pop-up will be immediately opened.

In the pop-up, you parse the caller field and extract your CRM id, so you can use this for your
external application to display the correct data.

From the agent’s page you can also manually open other forms for recent calls. The agent will also
see the person’s name in QueueMetrics, so this makes their life easier. The agent may also set a
manual status code for each call through QueueMetrics, e.g. if the sale was successful or not, and
this lets you measure your agent’s performance. You may also use QueueMetrics’s extensive QA
monitoring features to analyze calls and improve the process.

Analyzing outbound campaigns

If you set your campaign to have QM_COMPATIBLE logging, you will find data about two different
queues on QueueMetrics:

• If you run a report for queue "QmSample", you will see all calls that WD attempted - the
successful as well as the unsuccessful ones. This is basically the activity that WombatDialer
performed and the actual telephone usage duration. In a real-life scenario, the vast majority of
calls will be unanswered.

• If you run a report for queue "999", you will see activity about calls that were successfully
connected and were actually queued to be answered by agents, You would expect to have a very
low unanswered rate here - if it is high, it means something is not working as expected. You will
of course have some lost calls, e.g. because the called person hung up before the agent was
connected.

• The difference between the number of successful calls in "QmSample" and the total number of
calls in "999" are calls that were hangup before reaching the queue, e.g. during an initial IVR
phase.

Elastix queue call-backs
You are called in to a client site; they seem to have a problem. They run a small (10 agents) inbound
call center, and when you join everybody else in the meeting room, there is a large and colorful
graph in the middle of the table. The graph shows the call wait times during the week and boy, it’s

100

not a good sight. Their main inbound activity is to offer client support for a company selling sport
bikes, and everybody seems to be calling on Monday morning. It looks like people go riding on
weekends and whatever problem they have, they call on Monday morning. Wait times peak,
abandon rates spike, and nobody is happy. The call center manager is mostly concerned of having
to hire and train some temp people in order to handle the load that only happens one day a week.
They ask you if you have any better idea on what can be done. And yes, you have some.

You can program an Asterisk queue so that when people tire of waiting, they press a digit and get to
a menu where they can leave their number. Then the system queues their call and attempts to call
them at a convenient time. This way:

• your customer are happy; they don’t have to wait in queue for so long

• your call center manager is twice happy: the first time because wait times and abandon rates go
down, the second one because by placing calls at a convenient time they can smooth out the
workload of their agents during the day

This scenario requires some additional "glue" to what is basically supported by Asterisk - exiting a
queue and reading a number are easy, but then starts the pain. You’ll have to create a database and
write a script that reads back from it. You have to handle invalid numbers, busy numbers and the
like (if we promised to call back the client, we cannot just try once and forget about it). You’ll have
to have a GUI of some kind for the manager to start and stop dialing. You’ll have to adapt to the
number of available agents. You’ll have to report on this activities. You’ll have to avoid flooding the
trunks of your PBX with too many calls. In short, it’s the kind of thing that gets more complex the
more you think about it. That’s what WombatDialer is for.

What we plan to do is to use WombatDialer as the call-back engine. It can be controlled by an
external HTTP API, so you can do that from the Asterisk dial-plan. It has exact knowledge of the
current set-up and call back rules, so you get the number of calls you expect on one or more
Asterisk servers. It can work with an existing PBX and does not interfere with calls that are not its
own. It keeps track of call completions and knows what to do in case of invalid and busy numbers.
It has reports of its own and can work with QueueMetrics for powerful and detailed reports.

The client uses Elastix as PBX system, so we’ll have to integrate it with WombatDialer. No problem!

So what we do is:

• First we create a normal queue, for inbound. We call it "400".

• Then we create a call-back queue. If our main queue is called "400", then let’s call this second
queue "401". The idea is that WD will monitor this queue - when you have members on this
queue, then WD will start placing calls. This way an inbound call-center with multiple queues
will find it very natural to have some agents join and leave a call-back queue. When you create
this queue, make sure you set "Ring Strategy: rrmemory", "Event When Called: Yes", "Member
Status: Yes", "Autofill: yes" so that WD can use it effectively.

• we create a piece of dialplan that will handle the exits from queue "400" and will gather the
telephone number

• we create a new "custom extension" (399) that will jump in the dialplan at "Local/1@queue-
leavenumber"

101

• In Elastix, we create an IVR menu and set it as a destination for queue "400". This menu has only
one option (1) that basically jumps to the custom extension "399" that we just created, in order
to call our script

• we go back to the queue "400" and set its "Fail Over Destination" as our IVR we just created

We start by editing the extensions_custom.conf file in our system, adding a new stanza like:

[queue-leavenumber]
exten => 1,1,NoOp
exten => 1,n(Start),agi(googletts.agi,"Please enter your telephone
 number and we will call you back.",en)
exten => 1,n,agi(googletts.agi,"The number must be composed of 7 digits.",en)
exten => 1,n,Read(CBNUM,beep,7,,2,5)
exten => 1,n,NoOp(Num ${CBNUM})
exten => 1,n,GotoIf($["${LEN(${CBNUM})}"="7"]?lenOk)
exten => 1,n,agi(googletts.agi,"The number you entered has the wrong number
 of digits.",en)
exten => 1,n,GoTo(1)

exten => 1,n(lenOk),agi(googletts.agi,"You entered the following number",en)
exten => 1,n,SayDigits(${CBNUM})
exten => 1,n,Wait(1)
exten => 1,n,agi(googletts.agi,"Press 1 to confirm or any other digit to start
 again.",en)
exten => 1,n,Read(CONF,beep,1,,2,5)
exten => 1,n,GotoIf($["${CONF}"="1"]?Store:Start)

exten => 1,n(Store),NoOp
exten => 1,n,Set(WHEN=${STRFTIME(${EPOCH},,%y%m%d-%H%M%S)}
exten => 1,n,Set(PARM=number=${CBNUM}&attrs=orgQ:400%2Cwhen:${WHEN})
exten => 1,n,Set(foo=${CURL(http://10.10.5.18:8080/wombat/api/calls/?
 op=addcall&campaign=callback&${PARM})})
exten => 1,n,agi(googletts.agi,"Thank you! we will call you back as soon
 as possible.",en)
exten => 1,n,Hangup

We use Google TTS as a voice synthesizer - you could use a different one or you could have the
messages custom-recorded for you. What our dialplan does is first to collect a 7-digit number, then
read it back asking for confirmation and when confirmed, it sends it over to WombatDialer on a
campaign called "callback". Together with the number, we also store the code of the queue that the
call was on and the date and time this number was gathered. (Please note that in order to send
multiple comma-separated parameters in the HTTP request, we have to use %2C instead of the
plain comma ",").

In order to configure WombatDialer:

• We create a trunk called "Trunk" with a dial-string of Local/9${num}@from-internal and a
capacity of 10 lines. This basically replies all numbers as if they were entered on a local
extension prefixed by 9.

102

• We create an End-Point of type Queue for monitoring queue 401; set extension to "401" and
context to "from-internal"; max number of lines to 10; boost factor as 1 and max waiting calls to
2. This means that the number of calls placed will match the number of available agents on
queue 401.

• We create a campaign called "callback"; set it to Idle on termination and turn on
QM_COMPATILE logging. We add the trunk and the EP we just created. We create a set of
reschedule rules in order to handle REJECTED, BUSY, INVALID and NOANSWER calls, e.g. by
retrying up to 5 times each waiting 10 minutes between each attempt. Note that we create no
lists for this campaign.

• We start the new campaign; having no numbers, it should immediately turn yellow on the Live
page to tell you it’s idling.

If we start sending calls to the queue and we try and leave any numbers, we will see that a new list
will be created on WombatDialer under the name "callback/AUTO" and that will contain the
numbers and attributes like:

Number:
 5551235
Attributes:
 orgQ:400
 when:121115-153402

Those numbers are NOT immediately called, but WD will wait for some agent to be present and
active on queue "401" so that they can be called back. This way, the call-center manager can
monitor the current call backlog and decide who and when it is to join the callback queue.

Further improvements

• If there is a caller-id on the call, you could ask the caller whether to use it as the number to be
called back

• You could add time limits to the WD campaign so that you are sure that no calls are made
outside acceptable periods

Automated recall of lost inbound calls
If you run a call center, serving clients in a timely way is often very complex, as it requires having
enough people available to handle traffic spikes. The number of callers that disconnect because
they have been waiting too long in a queue is then an important driver of the quality of your work,
and these frustrated callers are the focus of much attention and scheduling/planning efforts in all
call centers. This is because in a traditional setting doing inbound calling you basically had no other
way of servicing the client but waiting for the person to call in.

With an Asterisk-based PBX and using digital lines, this scenario changes a bit, as:

• Your average caller has an associated caller-id that often matches a physical phone in their
proximity

103

• Telephone traffic is very cheap compared to the cost of agent time for call handling

• You have ample means of programming the PBX to suit your exact needs

So it is now a conceivable scenario to improve the services you are offering by adding an
automated call-back option, so that you search the logs of lost calls and you actively schedule recalls
on them in order to get back to people who hung up in frustration.

The plan: automatic queue recalls

In this article, we explain how to implement a basic call-back scenario using QueueMetrics and
WombatDialer. What we do is very easy, as in:

• We periodically run a script to gather the caller-ids of lost calls that were handled on a queue

• We check each caller-id as to be sure is a valid number

• We check that there is no subsequent successful call on the queue from the same caller-id (as to
prevent recalling people who already retried themselves)

• We schedule those calls for dialing no more than once per number per day

As our dialing schedule happens on a WombatDialer campaign, we can control the flow of calls
through it by adding and removing agents supposed to handle outbound traffic, or pausing it
completely during periods of high inbound traffic.

Step 1. Configuring QueueMetrics

In order to gather information from QueueMetrics to an external script, we need to enable XML-
RPC access credentials. This is usually very easy to do, as QueueMetrics ships with a (disabled)
ROBOT login that allows external access.

Enabling it is very easy: log in as an administrator, click on "Edit users", edit the "robot" user and
set "Enabled" to yes. While you are at it, take a second to change the default password.

Step 2. Configuring WombatDialer

Set up WombatDialer with a queue end-point (as described for example in Elastix Queue call-backs
with WombatDialer) and make sure everything is working.

Create a new campaign for calling back people - set its "Idles on termination" property to yes and
make the logging QueueMetrics-compatible. This way the campaign can run until needed, waiting
for more numbers to be added when idle. Do not add any call list as we will load numbers to be
called through the WombatDialer APIs.

Before you start scheduling recalls, your campaign should look like the following one:

104

You might also want to pause it, so you can decide when to run it.

Step 3. The script

Scripting QueueMetrics and WombatDialer is really easy. It can be done in any language - we chose
PHP as it is well known, has good XML-RPC support to query QueueMetrics and is very simple to
edit and customize.

We created a sample script that can easily be downloaded from GitHub - as you will likely edit this
to suit your needs, feel free to fork a new project and work on that. Our script is available from
https://github.com/Loway/OpenWombatDialerAddOns in a folder named "AutoRecall".

The following parameters should be edited in the script:

$qm_server = "10.10.5.11";
$qm_port = 8080;
$qm_webapp = "queuemetrics";
$qm_login ="robot";
$qm_pass = "robot";

These parameters specify the XML-RPC connector of your QueueMetrics instance.

$wbt_url = "http://10.10.5.18:8080/wombat";
$wbt_cmp = "c1";

These parameters specify the URL of WombatDialer and the campaign that calls should be added to.
The dialer must be running when the calls are added and the campaign should be active (usually
IDLE). Note that the campaign you use for call-back might be paused so that call-backs are actually
deferred during periods of high activity.

105

https://github.com/Loway/OpenWombatDialerAddOns

$queue = "300";
$lookback = 3600 * 8 ; // in seconds
$allowedPatterns = array(
 "/^555..../",
 "/^0041.+/"
);

These parameters decide which set of queue(s) should be scanned and how long is to look back for
the current day. Multiple queues can be used, separated by the pipe character.

The last parameter is a set of regexps that will be used to check the numbers read from
QueueMetrics. At least one regexp must match for the number to be queued. This is used to avoid
queuing invalid numbers or - worse - malicious numbers.

Step 4. Putting it all together

In order to run the script periodically, you could create a cron-job that runs it every 20 minutes. As
number are never recalled more than once and the script keeps an history files of numbers already
dialed, you can safely run it over and over again.

Once tested, a crontab entry like the following one will automate the running:

*/20 * * * * /usr/bin/php /root/WombatDialerExamples/AutoRecall/autoRecall.php

This is how a simple run looks like - the scripts logs its activity to STDOUT, so you may want to
redirect it to some log file for the keeping.

$>php autoRecall.php
Finding applicable period
Loading call log file for 2013-01-24
Looking for data between 2013-01-24.07:54:33 and 2013-01-24.15:54:33
 on server '10.10.5.25' - queues '300'
Query took 0 seconds.
201 - Last call lost @ 2013-01-24.15:46:39 - Scheduling.
Adding 201 to campaign c1 on WombatDialer.
Saving call log

After running this, you should see that new numbers are added to an AUTO call list like the one
shown in the following screenshot; and if the campaign is not paused and agents are available on
the recall queue, calls will be dialed as needed.

106

Improving the solution

In order to run this solution in a real-life scenario, you should edit the campaign in order to:

• set up a time window that matches your agents' presence and when it is customarily allowed to
recall. For example, even if a call is queued at 11 PM on a Saturday night, a recall might be
acceptable only on Monday morning. This of course depends on what you are doing and the
local customs.

• set up reschedule rules in order to handle calls unanswered and busy lines correctly. It would
be too bad not to be able to recall just because the caller’s phone was busy at the moment

• it could also be useful to connect the caller to a reverse-IVR first, so that they get a message like
"Hello, we are calling you back because of your call made at 10.30AM. If you’d like to talk to one
of our agents, please press 1 now" before being routed to an agent

• a simple addition that could be made to the script would be to set up a minimum wait time to
qualify calls; that is, you would recall only people who waited in queue for more than 10
seconds.

• using a technique very similar to the one explained here, it would be trivial to set up campaigns
for quality assessment or customer satisfaction, run as reverse IVRs.

Preview dialing with QueueMetrics
Preview dialing is a type of reverse dialing where the agent has a chance to "preview" the number
that is to be called before actually having a call placed.

The way it works is:

• The agent logs on to a queue. WombatDialer uses the queue (as it usually does in Reverse
dialing modes) to know which agents are available. This makes integration with QueueMetrics
very easy.

• The agent asks WombatDialer for a number to call. WombatDialer gets the next number out -
considering all its dialing and reschedule rules - and reserves it for the agent.

• The agent uses a GUI where they can see the number to be dialed and typically embeds, or links
to, an external CRM app so that they can review the call

• When the agent is ready, they ask for the call to be either placed or skipped.

• If the call is to be placed, the agent is connected immediately and listens to Music on Hold until
the callee is on line

• If the call is not to be placed, it is made with a special code

107

• Reschedule rules apply - so error states are handled correctly

Step 1: Set up your PBX:

In order to run this tutorial, we need to set up our PBX as follows:

• Three SIP extensions: 201, 202 and 203. We will use 201 as the agent extension while 202 and
203 will be used as sample end-points

• One queue, called "999", to hold our agent. Note that calls will NOT be processed through the
queue but we will use the queue to keep track of which agents are available. When defining it,
we make sure that we set: "Ring Strategy: rrmemory" - "Event when called: yes" - "Member
status: yes" so that WombatDialer can fully observe it.

Step 2: Installing WombatDialer

We install WombatDialer on the PBX system using yum. When we log in, we create:

• An Asterisk server that can talk to PBX. We can use the AMI user "admin" with the default
password you gave during the system installation.

• A trunk named named "Trunk", which dial string will be Local/${num}@from-internal

• An end-point of type QUEUE, which name is "999" (so that it observes queue 999), located at
extension "999" context "from-internal" (this is not really needed if you run only reverse
campaigns), setting both "Reverse dialing: yes" and "Manual preview: yes"

• We create a list called "Numbers" and leave it blank for now

• We create a campaign called "Reverse", which has logging set as "QM_COMPATIBLE" and which
logging code is "999". We add to it the trunk, the EP and the list we just created.

Now we go to the list manager and upload the following list:

200,NAME:John
202,NAME:Mike

This tells WD to dial numbers 202 and 203, and sets a NAME attribute for each call (that will be
useful when previewing).

Step 3: Installing and configuring QueueMetrics

Install QueueMetrics on the same machine as the PBX system by typing:

yum install queuemetrics

Now log in into QM and configure:

• An agent called agent/201

• A user for agent 201 called "agent/201" password "201" class "AGENTS"

108

• A general monitoring queue called "999". Set agent/201 in the MAIN level of that queue.

Now edit the "System parameters" and edit the section realtime.agent_web1 as follows:

realtime.agent_web1_url=http://10.10.5.46:8080/wombat/agents/rd_pop.jsp?agent=Local/[A
]@from-internal
realtime.agent_web1_label=WombatPreview

Edit the public IP of your PBX server and replace the "10.10.5.46" address above.

Making it all work together

• Log "agent/201" into QueueMetrics and have him join queue 999 on extension "201". Note that
we are using Hotdesking - the agent logs into Asterisk with their SIP extension.

• Start the dialer. From the Live page, start the campaign "Reverse". No calls will be placed.

• Check the dialer status. You should see WombatDialer observing queue 999 and finding
"Local/201@from-internal" logged on. Try pausing and unpausing the agent and refreshing the
dialer: the status of Local/201@from-internal should change accordingly.

Now click on the button called "WombatPreview" from the Agent’s page. You should see a preview
panel like the one in the picture:

As you can see the Preview panel is displaying the right record.

If you look at the Live page on WombatDialer, the call should appear as "Reserved". When the agent
clicks on Dial, the call should start. Once the agent answers, your dialer will try and connect the
other extension.

When dialing, the Live page will show what is going on:

109

And the same thing will happen on the Agent’s page:

Nice work, isn’t it? :)

Improving the solution

• You can add PSTN numbers to your lists and the will be dialed as if the had been entered on a
local extension.

• If you want WombatDialer to dial without waiting for an agent decision, just remove the
"Manual preview" check and restart the dialer.

• If you want a customized preview panel, you can create one by using the WombatDialer API.

Effective answering-machine detection
We want to run a simple outbound campaign, in which we plan to play a file and wait for the
receiver’s acknowledgment by pressing 1. We also want to make sure that in case the receiver has
an Answering Machine, we play a specific audio message that will be recorded by the machine.

The first thing we need is to set up the Answering Machine Detector in Asterisk; this can be done
using the embedded application AMD or a number of external tools. In this tutorial we cover the
embedded AMD application.

110

So the first thing we do is to configure the file amd.conf so that it has the following contents:

initial_silence = 2500
greeting = 1500
after_greeting_silence = 300
total_analysis_time = 5000
min_word_length = 120
between_words_silence = 50
maximum_number_of_words = 4
silence_threshold = 384

These are the default parameters used to detect a machine and they may need some tweaking for
your local market and spoken language.

The we create a special dialplan extension:

[amddetect]
exten => 1,n,Answer
exten => 1,n,Background(beep)
exten => 1,n,AMD(${AMD_EXTRA})
exten => 1,n,NoOp("AMD: ${AMDSTATUS} - ${AMDCAUSE}")
exten => 1,n,GotoIf($["${AMDSTATUS}" = "MACHINE"]?machine)

exten => 1,n,Set(TIMEOUT(response)=5)
exten => 1,n,Playback(/var/lib/asterisk/sounds/custom/${HUMANMSG})
exten => 1,n,Read(ack,,1)
exten => 1,n,GotoIf($["${ack}" = "1"]?confirmed)
exten => 1,n,Hangup

exten => 1,n(confirmed),UserEvent(CALLSTATUS,Uniqueid:${UNIQUEID},V:OK)
exten => 1,n,Wait(1)
exten => 1,n,Hangup

exten => 1,n(machine),UserEvent(CALLSTATUS,Uniqueid:${UNIQUEID},V:AMD)
exten => 1,n,WaitForSilence(2500)
exten => 1,n,Playback(/var/lib/asterisk/sounds/custom/${MACHINEMSG})
exten => 1,n,UserEvent(CALLSTATUS,Uniqueid:${UNIQUEID},V:AMDALL)
exten => 1,n,Wait(1)
exten => 1,n,Hangup

And we define an extension of type PHONE that points to 1@amddetect.

When we answer the call, we play a short beep to make sure that the channel is up, and then we
start AMD detection. The call will be blocked until AMD detection is complete; so there is a definite
trade-off between quick and accurate detection. To make your life easier during testing, we print
the result of the detection and its cause on the Asterisk console.

On the campaign itself, we define two campaign variables that will hold the names of audio files to
be played back in either case:

111

• HUMANMSG: is the audio file to be played back to humans

• MACHINEMSG: is the audio file to be played to answering machines

Though this is not strictly needed, you can tweak the parameters of the AMD detector by editing the
Extra AMD settings on the campaigns; these are passed as parameters to the AMD detector; if blank,
defaults are used.

The final status for answered calls will be:

• TERMINATED: a call that went to a human that did not acknowledge it

• TERMINATED/OK: a call that went to a human that acknowledged it

• TERMINATED/AMD: a call that went to AMD but was hung up before the message was played
completely

• TERMINATED/AMDALL: a call that went to AMD and the message was played completely.

You can use these call statuses to decide how to reschedule those calls, and to create new lists or
blacklist some specific numbers.

Fax detection works in a very similar way, but it kicks in automatically when
enabled on a channel.

112

Administering WombatDialer

Installing
WombatDialer is easily installed using yum or it can be installed manually. It can be installed on
the same server as Asterisk is (for small systems or testing) but on larger production systems we
recommend that it should be installed on a dedicated system (even a virtual machine will do).

WombatDialer can share a Tomcat instance with QueueMetrics for smaller systems (up to 50
agents/50 lines) but it should be really installed on a separate machine for larger systems, as it
might use large quantities or RAM and CPU.

WombatDialer can also be easily deployed using Docker, as explained in Docker
installation. This is perfect for installing a test system; but we have a number of
sites running real-life workloads on it.

WombatDialer offers a HTTP control API that is very simple, as to be used by the
Asterisk dial plan, IoT and scripts; it is not meant to be exposed to unauthenticated
access.

The best approach is to either protect access to the whole WombatDialer system
via the firewall, or to put a proxy in front and filter all requests to /api/... URLs
for whitelisted IPs.

It is also possible to add optional auth tokens to all API calls, as explained in
Optional authentication. This can be combined with a firewall and a proxy for a
thorough approach to system security.

Installing using yum

On a CentOS or derived Linux distribution, just run the following commands:

wget https://yum.loway.ch/loway.repo -O /etc/yum.repos.d/loway.repo

yum install wombat

This will in turn:

• install Java 8

• install Tomcat 8.5

• install MariaDB or MySQL server (if missing)

• install the dialer

At the moment we support CentOS 6 and 7. If you run CentOS 5, it is time to upgrade - if you really
cannot, please see https://www.queuemetrics.com/faq.jsp?uid=faq-110-java8-centos5

113

https://www.queuemetrics.com/faq.jsp?uid=faq-110-java8-centos5

Manual installation

You can install WombatDialer within any working servlet container version 2.5 or newer - we
suggest Tomcat 8.5. You will also need a working MariaDB or MySQL server. OpenJDK 8+ is fine.

• Download the latest version of WombatDialer as a .tar.gz package from the website

• Unpack the file in your servlet containers' webapps directory and rename the folder to
"wombat"

• Restart your servlet container

Example: manual installation on Debian / Ubuntu

The following example was tested on an Ubuntu 18.04 system. Debian systems should be very
similar.

First make sure you are running your shell as as root.

The main dependencies are OpenJDK and MariaDB. WombatDialer works with MySQL as well.

apt-get install tomcat8 mariadb-server

Then let’s download WombatDialer:

cd /var/lib/tomcat8/webapps/
wget/WombatDialer-18.08.1-215.tar.gz
tar zxvf WombatDialer-18.08.1-215.tar.gz
mv wombatdialer-18.08.1/ wombat/

Now we install the initial database schema - we will create a database called "wombat" on the local
DB.

cd /var/lib/tomcat8/webapps/wombat/WEB-INF/DB
mysql < wombat_create.sql
mysql -uwombat -pdials wombat < wombat_schema.sql

Now we restart Tomcat so chnges will be picked up:

service tomcat8 restart

Now connect to http://127.0.0.1:8080/wombat and follow the on-line wizard to create/update the
database.

The default installers for both Tomcat 8 and MariaDB start their services automatically on boot.

114

http://127.0.0.1:8080/wombat

On installation complete….

When installation is done, connect to http://myserver.address:8080/wombat - you will be asked for
the MySQL root password to create a local database When done, login using as user demoadmin
password demo.

WombatDialer ships with a free demo key that lets you use up to two lines - no limit on the number
of calls you make. You may want to get a free demo key so you can run a full evaluation of the
software in a real-life scenario.

License keys can be installed from the License page as soon as you log in.

Using an outbound proxy

WombatDialer requires outbound HTTPS internet connectivity to our licensing servers and cannot
run without. It can use a direct connection or can go through a standard Java SOCKS proxy.

If a direct connection is not possible, then you have to set up a SOCKS 5 proxy (that we imagine
being on address 1.2.3.4 at port 8888). You can then tell WombatDialer to use it by adding the
following items to the JAVA_OPTS start-up parameters:

-Dhttps.proxyHost=1.2.3.4 -Dhttps.proxyPort=8888

For more information on proxies supported by the JVM and how to configure them, refer to
https://docs.oracle.com/javase/8/docs/technotes/guides/net/proxies.html

Configuring e-mail

If you plan to use e-mail notifications, you should edit the tpf.properties file to tell WD about your
SMTP servers and the e-mail address it is supposed to use.

SMTP_HOST=smtp.gmail.com
SMTP_PORT=587
SMTP_AUTH=yes
SMTP_USER=your-gmail-account@gmail.com
SMTP_PASSWORD=wombat
SMTP_USE_SSL=no
SMTP_FROM="WombatDialer" <your-gmail-account@gmail.com>
SMTP_DEBUG=yes

As e-mail sending happens on the notification thread, a very slow SMTP server might delay HTTP
notifications. In this case, we suggest setting up a local SMTP relay that will immediately accept e-
mail and will forward it to the "true" SMTP host.

We suggest leaving SMTP_DEBUG on during the initial setup as it writes a verbose log of all SMTP
activity on the logs and lets you spot errors and issues quickly.

115

http://myserver.address:8080/wombat
https://docs.oracle.com/javase/8/docs/technotes/guides/net/proxies.html

Installing on Docker

Docker is an open-source project that automates the deployment of applications inside software
containers, by providing an additional layer of abstraction and automation of operating system-
level virtualization on Linux.

When you have Docker installed, starting a temporary instance of WombatDialer is as simple as
typing:

docker run -p 8080:8080 -d loway/wombatdialer

This will download the current WombatDialer (already pre-configured for you) and will run it by
exposing it on the local port 8080.

The problem with this approach is that when the image is terminated, all data is lost.

A better approach would be to create a data-only container to store the data. At this point, every
time you start WombatDialer, it looks for its own data into the data-only container.

You start by creating a named data-only container:

docker run --name=MYWBT loway/data true

At this point, you can run WombatDialer using that container, as in:

docker run --volumes-from MYWBT -p 8080:8080 -d loway/wombatdialer

WombatDialer will recognize whether the data container is blank and will initialize it properly. The
container also monitors the health of the running WombatDialer process and will restart it as
needed.

If you prefer, you may use a local folder instead of a data-only container, as in:

docker run -v /root/WBT1DATA:/data -p 9090:8080 -d loway/wombatdialer

This command mounts the local folder /root/WBT1DATA for WombatDialer to store its data in, and -
for a change - will expose WombatDialer on port 9090.

You can also control the local time-zone and the amount of memory used, by passing them as
parameters when starting up the image:

docker run -e CFG='{"memory":400,"timezone":"GMT"}' -p 8080:8080 -d loway/wombatdialer

When you need to upgrade WombatDialer - you simply stop the current image and start a new one
using the same data container. Your dialer is updated!

116

It is also possible to have a deeper control the JVM execution environment by
overriding the default JVM variables; for example:

docker run --name WOMBAT
 -e CATALINA_OPTS="-Xms256M -Xmx512M
-Duser.timezone=GMT+01:00"
 -e TZ=Europe/Lisbon
 -p 8088:8080
 -P -d loway/wombatdialer

What this means is that:

• the CATALINA_OPTS setting will affect the Java machine memory and timezone,
so you can fine-tune the JVM as you best see fit

• the TZ setting will affect the container’s own timezone

Upgrading
Upgrading WombatDialer is meant to be very easy - it is in any case worthwhile to make a complete
backup (see below) before attempting an upgrade. If you run WombatDialer on a virtual machine,
the easiest way might be taking a snapshot of the whole box before attempting the upgrade.

Before attempting an upgrade, always make sure that no calls are in progress and
that the dialer is turned OFF. If you have running campaigns, you should pause
them and wait for relevant calls to terminate.

If you update from a version of WombatDialer before 18 to version 18+, the database driver was
changed. Look for your tpf.properties file and replace the entry:

JDBC_DRIVER=com.mysql.jdbc.Driver
JDBC_URL=jdbc:mysql://127.0.0.1/wombat?user=wombat&password=dials&useUnicode=true&char
acterEncoding=UTF-8

With:

JDBC_DRIVER=org.mariadb.jdbc.Driver
JDBC_URL=jdbc:mariadb://127.0.0.1/wombat?user=wombat&password=dials&autoReconnect=true

And restart.

Upgrading via yum

If you originally installed via yum, this should be enough:

117

yum update wombat

System settings should be automatically transferred.

When the update is complete, on the first connection you might be asked to upgrade the database -
the dialer will not start until the database is up to date. Database upgrades will be applied
automatically.

If after an upgrade you get an error like java.util.MissingResourceException:
Can't find bundle for base name
org.eclipse.jdt.internal.compiler.problem.messages, this means that there are
cached classes created with a different version of the JDK.

You can have them flushed by issuing the commands:

service qm-tomcat6 cleancache
service qm-tomcat6 start

Manual upgrade

• Stop the servlet container

• Download the latest version of WombatDialer as a .tar.gz package from the website

• Move the current "wombat" webapp to a storage place (do not delete it!)

• Unpack the file in your servlet containers' webapps directory and rename the folder to
"wombat"

• Copy the tpf.properties file from the old wombat webapp to wombat/WEB-INF

• Restart your servlet container

When the update is complete, on the first connection you might be asked to upgrade the database -
the dialer will not start until the database is up to date. Database upgrades will be applied
automatically.

Starting and stopping
If you installed using yum, you should be able to run:

/etc/init.d/qm-tomcat6 stop
/etc/init.d/qm-tomcat6 start

to stop and start the Tomcat servlet container and thence WombatDialer.

If you installed manually, see the user manual for your servlet container.

118

Before stopping, always make sure that no calls are in progress and that the dialer
is turned OFF. If you have running campaigns, you should pause them and wait for
all relevant calls to terminate. If not, those calls will end up in status LOST.

The dialer status at startup

The dialer will usually start automatically when the webapp is loaded. Exceptions to this behavior
happen if:

• WombatDialer was updated and the database required updating. In this case the dialer will be
turned off until manually activated.

• There is no valid license installed.

If you prefer to avoid the dialer starting automatically, you can do this by creating a flag file called
'donotstart' to be placed under WEB-INF, like e.g.

touch ./WEB-INF/donotstart

In order to revert to the previous behavior, simply remove the flag file.

Backing up
All the information WombatDialer requires to run is contained within the wombat MySQL
database. Backing it up should suffice in most cases.

If you use a different database that the default MySQL on localhost, then you need to back-up the
file wombat/WEB-INF/tpf.properties that contains the database connection information.

For ease of recovery, you may also want to back up the whole "wombat" webapp.

Logs and logging
User-serviceable logs are available on the syslog viewer page. This tracks errors, agent logins,
campaign activity and many common user-facing conditions.

A log of severe errors is also held in the Tomcat logs directory, usually with file names of the format
wombat.2013-01-05.txt or similar.

This behavior can be customized by editing the file WEB-INF/classes/logging.properties in the
WombatDialer webapp.

119

org.apache.juli.FileHandler.level = SEVERE
org.apache.juli.FileHandler.directory = ${catalina.base}/logs
org.apache.juli.FileHandler.prefix = wombat.

java.util.logging.ConsoleHandler.level = SEVERE
java.util.logging.ConsoleHandler.formatter = java.util.logging.SimpleFormatter

You can turn off logging by setting the logging level to NONE, or create extra-detailed and huge logs
by setting the log level to FINE.

An extensive tutorial on Tomcat logging can be found at http://wiki.apache.org/tomcat/
Logging_Tutorial

Please note that running very detailed logs on a production system may create
huge files and may render the system unusable by generating too many I/O
requests.

Monitoring a running instance
WombatDialer exposes a large set of metrics through the JMX interface of Java; such metrics can be
inspected, downloaded and monitored by remote processes, or sent to a database for further
analysis.

A detailed reference description of each counter is available in JMX statistics API,
as well as a webservice to download all these data at once as a JSON object.

Connecting via VisualVM

One of the nicest things of the Java environment, the one that sits behind QueueMetrics and
WombatDialer, is that it offers a very accurate and detailed view of what is actually going on. You
do not need to use a special build of the software that is meant to gather statistics, and you do not
have to pay a high performance price for understanding what the system is doing, so that it is
perfectly acceptable to gather live statistics on a production environment. Even better, JVMs are
built for being monitored, so that there is a standardized ecosystem of tools to help you understand
what is actually going on. This approach is called JMX.

VisualVM is a free graphic tool that can be used to connect to a running Java VM in order to
understand what it is doing. Apart for checking memory, CPU usage and garbage collections, it can
be used to gather accurate information on what WD is doing internally, as WD exposes its own
telemetry through JMX.

To monitor WD running on a server from a workstation, the easiest thing is to set up a SSH tunnel.
You will need a recent Tomcat RPM (8.5.64 or newer).

So, once it is installed, you edit /etc/sysconfig/qm-tomcat6, and where it says:

120

http://wiki.apache.org/tomcat/Logging_Tutorial
http://wiki.apache.org/tomcat/Logging_Tutorial

Remove the comments below to activate JMX monitoring
JAVA_RMI_ADDRESS=localhost
JAVA_JMX_PORT="30000"

You uncomment the line with JAVA_RMI_ADDRESS; save the file and restart. You just need to do this
once, and this can be done safely even on production systems. You can change the JMX port if you
need to - does not matter which port you choose, as long as it is the same on your PC and on the
server.

Now, you go to your workstation and start a new SSH session with the following incantation, to
create a local tunnel for port 30000 and the following one too:

ssh root@my.wombat.server \
 -L 30000:localhost:30000 \
 -L 30001:localhost:30001

You can now run VisualVM on your workstation - most likely it will already be installed if you have
a Java SDK; if not, you can download it from: https://visualvm.github.io

Note that while the example above logs in over SSH as root, any user will do.

When you launch VisualVM, you should now click on the button Add JMX connection, and create a
new connection to localhost:30000, with no password and no encryption (as we already use the
SSH tunnel to guarantee security and encryption).

Peeking around: CPU and memory

Apart from the welcome page, the first things you should check are memory and CPU.

For example, in the graphs above, we can see that:

• CPU usage is around 30%, and is stable (graph on the top left). Very little garbage collections (the
blue lines) - they are usually the main culprits for Java performance problems.

• We have no memory pressure. The system hovers around 2G of usage (graph on the top right)

121

https://visualvm.github.io

and has more memory than it actually needs.

• The system was kind of idle in the last few minutes - it did not allocate much memory (look at
the memory graph), but it is computing something, as the CPU is still running.

• We can know what it is doing by getting a thread dump.

WombatDialer is not especially memory-hungry, but might create a lot of intermediate objects that
may cause memory pressure; of course, if you do not have enough memory, you will have a lot of
garbage collections that will freeze the system and will severely impact performance.

A number of interesting things can be done with VisualVM:

• Know your JVM: you can see the JVM settings from Overview / JVM arguments.

• Memory monitoring: you can see the current CPU, memory and thread usage from the Monitor
page. Note that with most settings, it is normal that all memory be used up before a garbage
collection is performed; so you would expect to see spikes and falls in the graph. You can also
force a garbage collection if you want to see the "true" memory usage, but this may be unwise
on heavily loaded production servers.

• Thread monitoring: you can get a textual thread dump like the one discussed above by selecting
Threads / Thread dump

• You can use the Sampler to acquire a breakdown of memory and CPU usage per class (you first
need to install the plugin VisualVM-Sampler from the Plugins menu, if not already available)

• You can keep a server open with multiple instances of VisualVM in order to monitor multiple
servers at once and compare what is happening on each of them.

Understanding WombatDialer’s telemetry

To access telemetry, you click on MBeans, and open the items under "Metrics", as displayed below.
Each metric has a name and offers one or more attributes. When you find an interesting attribute,
you just click on any number to turn it into a graph that follows the value across time, as shown
below.

122

Most things that WD exposes in its telemetry are loops; so they usually offer:

• a Count, that shows how many times the loop was traversed. Often, a loop runs when there is
an incoming message to be processed

• a value, that is usually shown in terms of Min, Mean and Max, and also in terms of percentiles
(median, 95%, 99%).

• a Rate, that is how many times per second the loop was triggered, in the last 1, 5 and 15 minutes

When inspecting a system, you should start from the core metrics, that is the brain, and from
metrics of connected Asterisk servers. The brain should be running smoothly, and at least 4/5 times
per second, and the command queue on each Asterisk server should be empty or nearly-empty.

Core Metrics

On each iteration, WD receives a set of messages from the GUI, your API and from any connected
PBX servers. It uses those messages to update its state, then decides what to do, and every once in a
while runs clean-up tasks. At the end of each loop, the database is synchronized (with a commit
and/or an eviction and/or a refresh).

• wombat.all.msg-in is the time spent processing the incoming mailbox. On an healthy system,
each loop should take just a few milliseconds. When processing API requests, it might spike up.
If a loop is taking more than 1 second, messages are processed in a further iteration; this should
never happen, or very rarely. Look at the high percentiles to see if this happens to you.

• wombat.all.brain tracks how long each brain iteration takes. They should be taking a few
milliseconds each. Detail on what is happening within is shown below.

• wombat.all.runafter is the task queue. Most times it should complete in zero time, i.e., the queue

123

is empty.

Brain time is further divided into:

• wombat.brain.brain is the actual decision time

• wombat.brain.runs is the time spent updating the campaign (e.g. refilling new calls)

• wombat.brain.calls is the time spent scheduling calls (included the second check against
blacklists)

• wombat.brain.reschedule is the time to close terminated calls, and apply reschedule/disposition
rules

After that, timed commits happen and logs are shipped for writing to a separate helper process.

When starting new campaign runs, or just running normally, numbers to be dialed have to be
loaded from the database:

• wombat.refill.new is the time spent fetching new numbers to dial

• wombat.refill.retry is the time spent fetching retries

• wombat.refill.blacklist is the time spent checking calls against blacklists. Calls are checked
against black-lists twice: when loaded and just before being attempted.

Database metrics

• wombat.hibernate.openconnection is the time and number of connections open by the brain. As
connections are persistent, it should happen just once, or a few times - otherwise it means the
dialer keeps restarting or the database disconnects. This is a major signal of distress.

• wombat.hibernate.save, wombat.hibernate.flush and wombat.hibernate.commit happen when
Wombat tries to write to the database. Theey might take a while - check high percentiles of
duration.

• wombat.hibernate.evict is called to remove old objects

• wombat.hibernate.refresh does a deep reload of objects

Look out for very high numbers, and then check what is happening on your database. Does it have
enough CPU and IOPS to run smoothly? Is it very busy, or is it sitting idle?

Asterisk metrics

Each Asterisk head has separate statistics and is displayed with its own name.

• WD/AMI-xxx.commandQueueSize is the number of messages that are ready to be sent to the PBX, but
cannot be delivered because the messages-per-second limit is hit, or because the PBX is
processing them too slowly. Ideally should always be zero - a long queue prevents WD from
working correctly. If this is consistently high, you need to increase the AMI message limit - but
beware that a PBX flooded with messages is prone to sudden crashes, so run your experiments
before changing it in production.

• WD/AMI-xxx.isConnected is 1 when the server is connected and 0 otherwise.

124

• WD/AMI-xxx.fromAsterisk is the time taken processing messages from Asterisk.

• WD/AMI-xxx.fromMaster is the time spent converting actions from WD to Asterisk.

• WD/AMI-xxx.sendSocket is the time spent sending messages on the socket.

Other metrics

The Helper offloads some tasks from the main dialer:

• wd-hlp.autorun is the time spent running tasks (HTTP, SMTP, database updates)

• wd-hlp.email is the time spent sending email

• wd-hlp.http is the time spent in HTTP notifications

Logger:

• wd-log.cycles is the time spent writing call logs. Logs are written in batches, where possible.

• wd-log.n_logs is the number of log entries written

Troubleshooting a running instance
Problems with a WD instance are usually either on the Java side or on the database side. We
present a few useful techniques to gather important data to be sent over for inspection.

Creating a thread dump

In order to diagnose problems with WombatDialer, it may be needed to take thread dumps by
running:

/etc/init.d/qm-tomcat6 threaddump > dump_2013-01-18.txt

These dumps prints what the threads are doing at a point in time. It may be worthwhile to take
multiple ones, a few minutes apart from each other.

Creating a TCP dump

In order to diagnose problems with WombatDialer, it may be needed to take TCP dumps:

First off you can check your network interfaces by typing:

tcpdump -D

the result will be something like

125

1.eth0
2.any (Pseudo-device that captures on all interfaces)
3.lo

Issue the dump on port 5038 (remember to add the -s option to avoid capturing only packet’s
headers)

tcpdump -i lo -s 65535 -w dump.pcap port 5038

This will generate a file called dump.pcap which can be analyzed using Wireshark.

Creating a heap dump

On request, you may need to create a heap dump. This is a large file containing the full contents of
the live JVM.

[root@wombat1 ~]# /usr/local/queuemetrics/java/bin/jps
1900 Jps
30808 Bootstrap

The line containing Bootstrap contains the PID of the Java VM running Tomcat.

[root@wombat1 ~]# /usr/local/queuemetrics/java/bin/jmap -F
-dump:live,format=b,file=heap.bin 30808
Attaching to process ID 30808, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 17.1-b03
Dumping heap to heap.bin ...
Finding object size using Printezis bits and skipping over...
Finding object size using Printezis bits and skipping over...
Finding object size using Printezis bits and skipping over...
Finding object size using Printezis bits and skipping over...
Finding object size using Printezis bits and skipping over...
Heap dump file created

The resulting file (called heap.bin as specified on the command line) might be very large and it
might take a while to create on busy systems with large Java heaps.

Before sending the file over it is better to compress it:

126

[root@wombat1 ~]# ls -l heap.bin
-rw-r--r-- 1 root root 40779016 Jan 10 08:45 heap.bin
[root@wombat1 ~]# bzip2 heap.bin
[root@wombat1 ~]# ls -l heap.bin.bz2
-rw-r--r-- 1 root root 8055474 Jan 10 08:45 heap.bin.bz2

Logging all MySQL queries

Edit the my.cnf file (usually in /etc/mysql/my.cnf). Look for the section called "Logging and
Replication".

#
* Logging and Replication
#
Both location gets rotated by the cron-job.
Be aware that this log type is a performance killer.

log = /var/log/mysql-all-queries.log

Just uncomment the "log" entry to turn on logging. Restart MySQL with this command:

service mysql restart

Logging of "slow queries" in MySQL

Edit file my.cnf and add the following parameters:

[mysqld]
log-slow-queries=/var/log/mysql-slow-queries.log
long_query_time = 2
log-queries-not-using-indexes

This will log all queries taking more than two seconds or running without a defined index to the
slow queries log.

Then restart MySQL.

Database Clean-up Script

In order to manage WombatDialer’s database size, a clean-up script is included in WombatDialer’s
installation package. The script file can be found in the application folder at the following path:

WEB-INF/DB/cleanup_wbt.sh

127

Before you run this script make sure you give it the appropriate permissions it needs to be
executed.

This script, when executed, searches for old data that is no longer useful or has been hidden by the
user. To decide how old must this data be in order for it to be deleted, the user must input a date
that will be considered its clean-up threshold.

There are two areas where data can be deleted:

• Campaign runs that are hidden, or happened before the given threshold date. This means
that the script will search for all runs of campaigns that are currently hidden that happened
before the input date. The runs will be removed; if the campaign has no other runs, then it will
be removed as well. If a campaign is deleted, all logs associated with the campaign will be
deleted as well. All System logs records before the given date are erased as well.

• Unused lists. If a list is hidden, and is used by no campaign or runs, then the list and all
numbers and attributes are removed. If you run this after cleaning old campaigns, lists used by
those campaigns will be removed.

When all the data has been erased, the script will initiate a procedure to rebuild all tables and
indexes, thus optimizing and improving database access times.

Please note that in order to successfully run this script, WombatDialer must be
turned off before running it. On a multi-gigabyte database, plan a few hours of
possible downtime.

Running this script will cause some data to be deleted permanently. It is possible
for the script to leave the database in an inconsistent state. It is mandatory that you
make a backup copy of your database before running this script.

Running the clean-up script

After navigating to the correct folder and setting the appropriate permissions to the script file, you
can execute it by typing:

./cleanup_wbt.sh -u wombat -p dials -d wombat -t 2017-12-31 -m all

As you can see, we need to input five parameters to execute the script. These parameters are all
mandatory except for one:

• -u: MySQL user parameter (Mandatory)

• -p: MySQL password parameter (Mandatory)

• -d: MySQL WombatDialer database name (Mandatory)

• -t: Date threshold to identify old data (yyyy-mm-dd). Data more recent than this date will not be
considered for elimination. (Mandatory)

• -m: Mode selection. Available modes are: list, delete, optimize, preview, all. The default mode is
all.

128

There are five different modes for the script:

• list: Does not delete any data, only shows hopper elements that would be removed in a normal
execution.

• preview: Does not delete any data, only shows hopper elements and call lists that would be
removed in a normal execution.

• delete: Deletes all old data, without table optimization.

• optimize: Optimizes all the tables.

• all: Default mode. Executes all the passages in order.

We suggest manually running the script as preview first; then delete and then optimize.

129

API reference
This chapter documents the different WombatDialer APIs available. As a reference point, we have a
public repository with some examples and integration code that leverages APIs at
https://github.com/Loway/OpenWombatDialerAddOns where you can find scripts and examples. We
welcome contributions!

Controlling Asterisk from WD
When a call is originated in Asterisk, a set of channel variables are created:

• WOMBAT_HOPPER_ID is a unique identifier of the call being processed (on old versions, it used to
appear as WOMBAT_ID)

• all input attributes are passed to the call

This way, all attributes you set for the call are immediately available within the Asterisk dialplan.

For example, if you define input attributes called HH and MM in WD, you can use them in the
dialplan to synthesize an audio message as in the following example:

exten => s,n(start),agi(googletts.agi,"Your appointment with the dentist
 is for tomorrow at ${HH} ${MM}")

Controlling WD from Asterisk
WD lets you pass information about a call that is currently processed in Asterisk in the form of
User Events. This lets you set the completion code for the call and any additional parameters, e.g.
IVR responses, right from the Asterisk dialplan.

UserEvents can only be set on calls that are connected; if sent before the call is up, they will be
ignored.

Format of User Events

User events are triggered through the dialplan through the UserEvent Asterisk application.

They are used to:

• Set the completion code for a given call

• Store additional outbound attributes on the call in WD

Triggering a user event

You can easily trigger User Events by calling the Asterisk dialplan like:

130

https://github.com/Loway/OpenWombatDialerAddOns

exten => s,n,UserEvent(name,Uniqueid:${UNIQUEID},P0:parm1)

or

exten => s,n,UserEvent(name,Uniqueid:${UNIQUEID},P0:parm1|P1:parm1)

In case you want to pass two parameters.

The event name is not case sensitive.

The Uniqueid field must match the ID that is used for the main leg of the call; so in case you are
dialing in reverse mode, you should use:

exten => s,n,UserEvent(name,Uniqueid:${CHANNEL(LINKEDID)},P0:parm1)

To make sure you are using the right identifier.

You can see the "canonical" Uniqueid on a WombatDialer call by going to the "Call
Log Record" of your call and checking under "Technical details". You can also see it
on live Asterisk calls by using the CLI command core show channel ... when the
call is up.

Setting call status codes

In order to set the extended status (completion code) of a call, you should trigger an UserEvent like:

exten => s,n,UserEvent(CALLSTATUS,Uniqueid:${UNIQUEID},V:XXX)

This sets the completion code for the current call to XXX. If multiple completion codes are received
for the same call, the last one wins. Completion codes are then used by WD’s Reschedule Rules in
order to decide what to do with the call.

Output call variables

You can set an output attribute for the current call by running:

exten => s,n,UserEvent(ATTRIBUTE,Uniqueid:${UNIQUEID},name:value)

This will create an attribute called "name" with value "value". If the same attribute already exists, it
is replaced.

As an alternative, you can append values to an existing attribute, like:

131

exten => s,n,UserEvent(ATTR_APPEND,Uniqueid:${UNIQUEID},name:value)

This will append the value "value" to the current value of attribute "name"; if the attribute is not
present, it will be created with value "value". This makes it easy to to track the traversal of IVR
trees.

You may also want to clear all output attributes (but of course not input ones) of a call by issuing:

exten => s,n,UserEvent(ATTR_CLEAR,Uniqueid:${UNIQUEID})

Please note that:

• Attributes are per number; so if you call the same number multiple times, its attributes will be
the last ones used.

• All attributes are text strings

• A call may have an unlimited number of attributes

 It is possible to set status and attributes from the HTTP interface as well.

Controlling WD over HTTP
WD is built so that it can be controlled externally by an external script or dial-plan function. The
protocol is very simple and - by default - not authenticated (but see below), so you must make sure
that it is not reachable from unsafe parties. See Installing Wombat.

In the following examples, we assume that WD is running at address http://127.0.0.1:8080/wombat

It is important to notice that the /' before the question mark in the following examples is mandatory
- if not present you will get an HTTP error 404.

Though the examples below display HTTP GET requests, the APIs work as well with HTTP POST
calls.

Optional authentication

While it is not so by default, you can add an optional layer of security that will prevent access to
basic API calls unless you hold one of the approved tokens. These tokens are specified system-wide
through a JVM configuration property, and you can set one or more of them by separating them
with a comma, as shown below:

wd.auth.tokens=3db6e6b81bfe8a,e51979ce575e949dc

These tokens are case-sensitive, and we suggest using random text sequences, as you best see fit in
terms of length.

132

http://127.0.0.1:8080/wombat

On a default RPM installation of WombatDialer, you can set these properties by
editing the file /etc/sysconfig/qm-tomcat6, by adding them to the end of the
JAVA_MEM property so that instead of being e.g. JAVA_MEM="-Xms256M -Xmx768M" it
becomes JAVA_MEM="-Xms256M -Xmx768M
-Dwd.auth.tokens=3db6e6b81bfe8a,e51979ce575e949dc".

When the JVM property is set, all API calls below require an extra parameter auth_token_id that will
be checked to see if it matches any of the tokens set. If none of them matches, then the request is
denied.

For simplicity’s sake, all examples in this chapter are displayed without the extra auth parameter;
but if you have a call like:

 http://127.0.0.1:8080/wombat/api/calls/?op=addcall&campaign=ABC&number=45678

And you enabled auth tokens, you need to add your token to the request, like:

http://127.0.0.1:8080/wombat/api/calls/?op=addcall&campaign=ABC&number=45678&auth_toke
n_id=3db6e6b81bfe8a

Engine control

The dialer can be started and stopped by the API, and its current state can be retrieved.

Retrieving current engine state

 http://127.0.0.1:8080/wombat/api/engine/?op=STATE

Will produce a JSON output like:

{
 "state" : "READY",
 "uptimeMs" : 5809,
 "msgSent" : 23,
 "msgReceived" : 108,
 "maxLicensedChannels" : 20
}

This shows:

• The current state.

• The current up-time for the dialer

• The number of messages sent and received

133

• The maximum number of licensed channels

Valid states are:

• READY: Wombat is up and running.

• DOWN: The dialer is currently switched off.

• TERMINATION_REQD: The dialer was up and a message was queued to ask it to shut down. This may
take a few seconds; you can check its state by sending a new STATE call.

• TIMEOUT_NO_REPLY: The dialer did not answer within 10 seconds; it is either extremely
overloaded, or it was shut down in the meantime.

Uptime, number of messages and licensing information will be zeroed out if the
state is not READY.

Start and stop the engine

To start the dialer’s engine you call:

 http://127.0.0.1:8080/wombat/api/engine/?op=START

This call returns the current state. If you call this on an engine that is already started, nothing
happens.

To stop the dialer, you call:

 http://127.0.0.1:8080/wombat/api/engine/?op=STOP

The reply is always a message of type TERMINATION_REQD, and you will have to check the state again
in a few seconds. Note that this is a graceful termination; the dialer is requested to stop, so it will do
it once the current set of messages is processed.

Once the engine is off, any pending call will remain pending, and it will not be
tracked any longer, no matter what happens on the PBX. So, before terminating the
engine, you should make sure that all runs are paused or terminated, and that no
calls are ongoing. See below for the relevant APIs.

Calls

Add a call to a campaign

This methods lets you add a call to a campaign that is either running or idling.

 http://127.0.0.1:8080/wombat/api/calls/?op=addcall&campaign=ABC&number=45678

You can queue calls for the future by adding a reschedule attribute, either as an offset in seconds

134

(positive integer) or an absolute date having the format YYYY-MM-DD.HH:MM:SS.

 schedule=15
 schedule=2012-03-18.00:00:00

You can also set multiple attributes, as in:

 attrs=ID:2301,PERS:John_Doe

If you add the same number multiple times, then it will be dialed multiple times.

Current versions of WombatDialer by default apply backpressure, that is, will not just enqueue a
number for being added but will expect a confirmation that the operation was performed. As the
number is actually handled by the main WombatDialer process, this means that it is scheduled
together with the rest of current activities, and therefore the call might require tens or hundreds of
milliseconds to be completed. On the other hand, this prevents you from uploading numbers faster
than WD can handle them.

If you are sending numbers from a time-sensitive process (e.g. the Asterisk dial-plan) you may want
to add the parameter fireforget=1 so that the call will return immediately. This was the default
behavior up to WD 20.04. The downside is that if you push hundreds or thousands of numbers at
once, they might require a lot of time to be fully processed, and this risks disrupting current calls or
making the dialer unresponsive.

If the campaign is idling, it will be "woken up" automatically when new numbers are added.

It is important to understand that all calls added this way are technically reschedules, even if no
schedule attribute is set. Still, the first attempt will be numbered 0, in order to keep a consistent
approach when using multi-numbers.

This method is meant to drip-feed numbers to an existing run, as needed. If you
need to upload hundreds or thousands of numbers at once, what you want to do is
to upload a list of numbers at once and then add it to a campaign - this can be
achieved though the Configuration API and/or the addToList method and has better
performance.

Set extStatus and attributes on a live call

While a call is being dialed, it is possible to set a user event externally in a manner that exactly
matches normal UserEvents. The important difference is that you do not need the UniqueID but the
WombatID.

Set a call’s extStatus to XY:

 http://127.0.0.1:8080/wombat/api/calls/?op=extstatus&wombatid=123456&status=XY

135

Create or set attribute AB to value CD:

 http://127.0.0.1:8080/wombat/api/calls/?op=attr&wombatid=123456&attr=AB&val=CD

Append string EF to the current value of attribute AB:

 http://127.0.0.1:8080/wombat/api/calls/?op=attrAppend&wombatid=123456&attr=AB&val=EF

Remove all outbound attributes for this call:

 http://127.0.0.1:8080/wombat/api/calls/?op=attrClear&wombatid=123456

This API works as well for closed calls; so you can set extStatus and variables on calls that are
already terminated. The most important limitation when doing so is that any Reschedule or
Disposition Rules that would have been triggered by if the call had had the correct extStatus on
termination are NOT triggered.

Campaigns and runs

Start a new run with an existing campaign

This call starts a new run an existing campaign; if the campaign is not startable (e.g. because it is
already running) the call is ignored.

 http://127.0.0.1:8080/wombat/api/campaigns/?op=start&campaign=ABC

Pause a running campaign

This call pauses a campaign that is running or idling; if no run is found in a suitable state the call is
ignored.

 http://127.0.0.1:8080/wombat/api/campaigns/?op=pause&campaign=ABC

Unpause a running campaign

This call unpauses a run that is currently paused, when unpaused it may start dialing or keep on
idling or start waiting for a correct time to place calls.

 http://127.0.0.1:8080/wombat/api/campaigns/?op=unpause&campaign=ABC

Remove a run

This call removes an existing run; the run is supposed to be paused and you should either wait an

136

appropriate amount of time or you should make sure no calls are active (if not, they will be forcibly
closed in Wombat and will end up in state ERROR, while they will not be tracked anymore if they are
active on the PBX).

 http://127.0.0.1:8080/wombat/api/campaigns/?op=remove&campaign=ABC

Reload a campaign

This call asks for a campaign to be reloaded, i.e. its definition to be read from the one that is
currently saved in the database and not the one that was used when the campaign started.

This lets you pick up any changes you made to the campaign configuration on a running campaign.

 http://127.0.0.1:8080/wombat/api/campaigns/?op=reload&campaign=ABC

Reload does not pick up an updated definition for Asterisk servers, Trunks and EPs, as these objects
are possibly shared across all campaigns. Still, it is possible to "change" an existing object, say an EP,
by the following rules:

• Create a new EP through the API

• Edit a campaign; remove the old EP and add the one you just created

• Reload the campaign

At this point, the new EP will start being used, while calls made on the old EP will still run until they
terminate.

Clone a campaign

 http://127.0.0.1:8080/wombat/api/campaigns/?op=clone&campaign=xx&newcampaign=yy

This will clone existing campaign named ABC to a new one named DEF. It will clone only the
campaign definition, so no activity statistics - just like if you were to create a new one from the GUI.
After cloning, you’ll have to start the campaign run.

Add an existing list to a campaign

This call lets you add an existing list to an existing campaign (usually on a cloned one). It will not
work on running campaigns as they will not pick-up the new configuration until restarted.

 http://127.0.0.1:8080/wombat/api/campaigns/?op=addList&campaign=QMS&list=ZEB

Add an existing list to a campaign as a black-list

This call lets you add an existing list as a black-list to an existing campaign (usually on a cloned
one). It will not work on running campaigns as they will not pick-up the new configuration until

137

restarted.

 http://127.0.0.1:8080/wombat/api/campaigns/?op=addBlackList&campaign=QMS&list=ZEB

Notify the state for an API-driven end-point

 This feature is experimental and subject to possible changes.

This call lets you feed information to WD for an API-driven end-point.

 http://127.0.0.1:8080/wombat/api/endpoint/?op=update&queue=z1&n_idle=20

Parameters:

• queue is the name of the EndPoint - it must be of type API, otherwise it will not be updated. On
the other hand, multiple EPs of type API can share the same queue and will be updated at once.

• idle, ringing, talking, paused: a comma-separated list of agents that are in each state. If no
parameter passed, or left empty, each set of agents is considered to be empty.

• calls: a list of calls that are present on the queue waiting to be connected. Calls that are already
connected should not appear here (but their agents should appear under talking). You can use
any Ids you like.

• n_idle, n_ringing, n_talking, n_paused, n_calls: when the exact agent/call codes are not
important (e.g. for direct dialling) you can use one of these parameters to have a list of entries
created on the fly.

Agent codes should be "real" channel definitions for reverse or reverse-preview modes, at least for
idle agents. When called on the Asterisk server, they should be able to ring the relevant phone on
your destination system.

In all other cases (and for call lists), it is up to you whether you want to specify the exact agent and
call codes, or you just want to update the system by sending in an aggregate. Internally, the
aggregate will be expanded into a pro-forma list of items, for example n_idle=2 will expand to
idle=idle/1,idle/2.

This call is synchronous, it will return only after the update has been picked up by the dialer, as to
help enforce backpressure.

This service should be called every time there is an update, at least with the list of free agents. It is
okay to batch multiple calls together if they happen within 100-300ms from each other. You can
experiment with lower update rates (e.g. every second, or every few seconds) but the update rate
should be significantly shorter than the average call set-up time.

When sending messages very quickly, do monitor that incoming messages are
processed as they come - you don’t want to build up a backlog. See Monitoring a
running instance.

138

Query current calls and recalls for runs

This call lets you query the state of ready and deferred calls for a given run or set of runs. Calls
scheduled for the future are split into "reschedulingSoon", that is calls that are either immediately
reschedulable or will become so within a short time limit (by default 5 minutes) and
"reschedulingLater". The limit on which they are to be separated can be set by the user.

 http://127.0.0.1:8080/wombat/api/recallinfo/

The method accepts the following parameters:

• campaign is a substring to be searched in a campaign’s name. If missing, all runs will be shown.

• late_reschedule is the time limit - in seconds - that separates "soon" to be rescheduled calls from
"late" reschedules. Default is 300.

The results shows all calls ready to be run (as they are in the hopper) and all live calls, split by
status; plus all recalls scheduled for the run.

The output looks like the following one:

{
 "runs" : [{
 "campaignName" : "ABC-3.15-fixed",
 "runName" : "15.03.25 16:18:36",
 "runId" : 123,
 "callsInHopper" : 10,
 "callsByState" : {
 "IN_HOPPER" : 10
 },
 "reschedules" : 0,
 "reschedulingSoon" : 0,
 "reschedulingLater" : 0
 }, {
 "campaignName" : "ABC Mexico",
 "runName" : "15.04.02 14:39:49",
 "runId" : 124,
 "callsInHopper" : 134,
 "callsByState" : {
 "IN_HOPPER" : 134
 },
 "reschedules" : 257,
 "reschedulingSoon" : 254,
 "reschedulingLater" : 3
 }],
 "reschedule_late_limit_sec" : 300
}

139

Add (or restart) list to a running campaign

It is possible to add a list that the campaign was not originally started with to a running campaign.
Lists are processed in sequence, so it will generally be read only after the original lists are fully
scanned.

 http://127.0.0.1:8080/wombat/api/runlists/?op=start&campaign=Test&list=L1

If the run already has that list and the list is paused, then it is unpaused.

If you are looking at the current lists from the GUI, then you will have to refresh them to see the
changes you made.

Pause list in a running campaign

In order to pause a list on a running campaign, you can use the following call.

 http://127.0.0.1:8080/wombat/api/runlists/?op=pause&campaign=Test&list=L1

If the list does not exist on your run, the service completes successfully but nothing happens.

In order to unpause a paused list, you call the start operation again.

Please note that pausing a list stops Wombat from fetching further numbers from the paused list,
but does not prevent Wombat to call numbers it has already fetched that are ready to be called.
Using a smaller "batch size" prevents Wombat to fetch too many numbers in advance, and so might
be of interest if you need to pause/unpause lists often (at the price of a higher database load).

A campaign that has paused lists will not terminate naturally, but will remain active until either
you unpause those lists or you forcibly remove the campaign.

Show lists on a running campaign

You can query the association of lists to a specific running campaign.

 http://127.0.0.1:8080/wombat/api/runlists/?op=list&campaign=Test

The output shows all lists, specifying whether they are currently paused and whether they are
already finished.

140

[{
 "listId" : 2,
 "listName" : "TestList2",
 "highWater" : 131,
 "isRunning" : false,
 "isFinished" : false
}, {
 "listId" : 3,
 "listName" : "L1",
 "highWater" : 1203,
 "isRunning" : true,
 "isFinished" : true
}]

Set boosting on a running campaign

You can set the boost factor on a running campaign:

http://127.0.0.1:8080/WombatDialer/api/campaigns/?op=boost&campaign=TestCampaign&facto
r=78

The boost factor is expressed as an integer percentage and must be between zero and 500 (5x).

Call lists

Add numbers to a list

This call adds the numbers passed in numbers to the call list ZEB_2 - if it does not exist, it will create
it. Numbers are a pipe-separated list of numbers and optional attributes.

 http://127.0.0.1:8080/wombat/api/lists/?op=addToList
 &list=ZEB_2&numbers=1234,AA:bb,CC:dd|5678,XX:yy

If you set the parameter dedupe=1 then numbers will be checked for existence on this this list
before being added. This requires a significant database load, so use with caution on a running
system where lists are over 10,000 elements each. Numbers are considered to be existent if they are
present on the list no matter what their attributes might be.

It is very common to use HTTP POST to add numbers, so that you can upload a large set at once. The
maximum request size depends on your servlet container, but is usually in the order of 1-2
megabytes.

Stow away: rename and hide lists in one go

Sometimes it is useful to work with lists that always have the same names, and to remove them
when they are not used. As lists cannot be deleted from a Wombat system, it is useful to "stow
away" them by renaming them and hiding them in one go.

141

 http://127.0.0.1:8080/wombat/api/lists/?op=stowAway&list=LEADS&as=LEADS_170112

This call renames your current list LEADS to LEADS_170112 and hides it; at this point you can
simply create a new list called LEADS and use it.

You will have to manually remove the list from any campaigns that might be using
it; otherwise they will keep using the old (hidden) list.

Preview dialing

You can control Preview Reverse dialing through the API. A somewhat simpler alternative may be
using the Preview page.

Reserve a call

In order to reserve a call, you should call WombatDialer by issuing a request like the following:

http://127.0.0.1:8080/wombat/api/reserve/?op=reserve&agent=SIP/302

It is of paramount importance that the agent parameter matches an agent code as present in
Asterisk.

If all goes well, the reply is like:

OK: OK
WOMBATID: 366253628
NUMBER: 301
VAR: A=1
VAR: B=2

You should make a note of the WOMBATID as it will be used in subsequent calls. If you call this API
multiple times, the same call will be returned as long as the agent has one reserved call.

Error codes include:

• AGENT_NOT_AVAILABLE: The agent is not present, or is busy o paused

• AGENT_CANNOT_RESERVE: No available call for the agent to make - there is no running
campaign that points to that agent where there is free space on the trunk and there is a call to
be made, or the agent is busy elsewhere

Place a reserved call

In order to place a reserved call, you need to feed Wombat its WOMBATID:

http://127.0.0.1:8080/wombat/api/reserve/?op=dial&id=123456

142

Returns

• DIALING: the call is being placed

• ID_NOT_FOUND: No such ID

• ID_FOUND_WRONG_STATE: The ID exists but the call is in a wrong state

Skip a reserved call

In order to skip a reserved call, you need to feed Wombat its WOMBATID:

http://127.0.0.1:8080/wombat/api/reserve/?op=skip&id=123456&withStatus=XXX

The parameter "withStatus" is optional and that will be the extStatus for the call being skipped. You
can use this to get fine control on whether it is to be rescheduled and how.

Returns:

• SKIPPED: the call was skipped

• ID_NOT_FOUND: No such ID

• ID_FOUND_WRONG_STATE: The ID exists but the call is in a wrong state

Live call details

You can get the details of a currently live or scheduled call.

http://127.0.0.1:8080/wombat/api/callinfo/?wid=WBT.1234

The parameter "wid" contains the WombatId. It can contain a prefix "WBT" as it is logged on
QueueMetrics logs or it can be without it. As an alternative, you can pass the parameter "unqid"
that contains an Asterik’s UniqueID for the call.

The method will:

• look for the call on the Live calls table (returns "isLive" as true)

• look for the call in the logs (returns "isLive" as false)

Wombat will return a JSON data structure of the format:

143

{
 "callFound" : true,
 "isLive": true,
 "callRecord" : {
 "callId" : 418760,
 "listId" : {
 "listId" : 95,
 "name" : "Z7_04142015",
 "isHidden" : false,
 "securityKey" : ""
 },
 "number" : "9377893386",
 "attributes" : [{
 "isInput" : true,
 "attrName" : "FIRST NAME",
 "attrValue" : "KATRINA"
 }]
 },
 "call" : {
 "hopperCallId" : 212783745,
 "number" : "9377893386",
 "numberId" : 418760,
 "state" : "IN_HOPPER",
 "trunk" : "ABC Trunk",
 "astServer" : "ABC",
 "trunk_size" : 40,
 "endpoint" : "QUEUE Zebra Seven",
 "campaignRun" : "Z7_1210 15.04.16 12:22:57",
 "tst_originate" : 0,
 "tst_connect" : 0,
 "tst_terminate" : 0,
 "astUnique" : "",
 "astChannel" : "",
 "nRetry" : 0,
 "statusExt" : "",
 "subEp" : "SIP/21071",
 "bridgedChan" : ""
 }
}

The most important items are:

• callFound: whether a call with the ID was found or not

• isLive: whether the returned result comes from a live call or from the logs (completed call)

• call: the current details of the live call

• callRecord: the details of the number being called - its current attributes and the list it belongs
to.

144

System health

It is possible to receive a JSON structure with general information about the system. It is meant to
be used by external monitoring systems that need to make sure WombatDialer is working.

http://127.0.0.1:8080/wombat/api/sysup/

The response will be similar to the one below:

{
 "state" : "WBTUP",
 "ramFreeMb" : 73,
 "ramTotalMb" : 139,
 "ramMaxMb" : 1818,
 "db_access_ms" : 4,
 "generatedOn" : "Mon Sep 29 16:04:00 CEST 2014",
 "version" : "0.8.0/#1234"
}

When this transaction is run, the database is accessed to make sure it is available. If the response
block does not contain the string "WBTUP" the application is supposed to be down and in need of a
restart.

Even when you get the state WBTUP, you know that the web application is available,
but the dialer itself might be stopped, like when you start and stop it from the GUI.
See Engine control.

JMX statistics

WombatDialer traces a wealth of information about its runtime performance as JMX beans that are
available to JMX pollers. As JMX is notoriously hard to set up correctly, it is also possible to read the
majority of that data using a webservice:

http://127.0.0.1:8080/wombat/api/sysup/jmx/

The response will be similar to the one below:

{
 "\"WD/AMI-127.0.0.1:15038#6.actionsSize\":value" : "0",
 "\"WD/AMI-127.0.0.1:15038#6.looptime\":50th" : "11.229",
 "\"WD/AMI-127.0.0.1:15038#6.looptime\":95th" : "12.64",
 "\"WD/AMI-127.0.0.1:15038#6.looptime\":count" : "166",
 "\"WD/AMI-127.0.0.1:15038#6.looptime\":max" : "17.977",
 "\"WD/AMI-127.0.0.1:15038#6.looptime\":min" : "10.04",
 "\"WD/AMI-127.0.0.1:15038#6.looptime\":rate_sec" : "15.484",
 "\"WD/AMI-127.0.0.1:15038#6.looptime\":rate_sec_oneminute" : "15.416",

145

 "\"WD/AMI-127.0.0.1:15038#6.msg.all\":value" : "ERROR",
 "\"WD/AMI-127.0.0.1:15038#6.msg.check\":value" : "ERROR",
 "\"WD/AMI-127.0.0.1:15038#6.msg.originate\":value" : "ERROR",
 "\"WD/AMI-127.0.0.1:15038#6.queue-size\":value" : "ERROR",
 "generatedOn" : "Fri Nov 15 14:56:14 CET 2019",
 "jmx_query_ms" : "28",
 "jvm_code_cache" : "18897472",
 "jvm_cpu_load" : "0",
 "jvm_daemon_threads" : "24",
 "jvm_heap_max" : "3817865216",
 "jvm_heap_used" : "141595248",
 "jvm_loaded_classes" : "6145",
 "jvm_nonheap_max" : "-1",
 "jvm_nonheap_used" : "61834768",
 "jvm_thread_count" : "25",
 "jvm_total_compilation_time" : "12576",
 "jvm_unloaded_classes" : "0",
 "wd-hlp.autorun:50th" : "0",
 "wd-hlp.autorun:95th" : "0",
 "wd-hlp.autorun:count" : "0",
 "wd-hlp.autorun:max" : "0",
 "wd-hlp.autorun:min" : "0",
 "wd-hlp.autorun:rate_sec" : "0",
 "wd-hlp.autorun:rate_sec_oneminute" : "0",
 "wd-hlp.email:50th" : "0",
 "wd-hlp.email:95th" : "0",
 "wd-hlp.email:count" : "0",
 "wd-hlp.email:max" : "0",
 "wd-hlp.email:min" : "0",
 "wd-hlp.email:rate_sec" : "0",
 "wd-hlp.email:rate_sec_oneminute" : "0",
 "wd-hlp.http:50th" : "0",
 "wd-hlp.http:95th" : "0",
 "wd-hlp.http:count" : "0",
 "wd-hlp.http:max" : "0",
 "wd-hlp.http:min" : "0",
 "wd-hlp.http:rate_sec" : "0",
 "wd-hlp.http:rate_sec_oneminute" : "0",
 "wd-log.cycles:50th" : ".003",
 "wd-log.cycles:95th" : ".022",
 "wd-log.cycles:count" : "115",
 "wd-log.cycles:max" : ".067",
 "wd-log.cycles:min" : ".001",
 "wd-log.cycles:rate_sec" : "9.752",
 "wd-log.cycles:rate_sec_oneminute" : "9.784",
 "wd-log.n_logs:value" : "ERROR",
 "wombat.all.brain:50th" : "4.662",
 "wombat.all.brain:95th" : "11.947",
 "wombat.all.brain:count" : "199",
 "wombat.all.brain:max" : "18.31",
 "wombat.all.brain:min" : ".004",

146

 "wombat.all.brain:rate_sec" : "16.871",
 "wombat.all.brain:rate_sec_oneminute" : "16.112",
 "wombat.all.msg-in:50th" : ".013",
 "wombat.all.msg-in:95th" : "3.632",
 "wombat.all.msg-in:count" : "199",
 "wombat.all.msg-in:max" : "159.502",
 "wombat.all.msg-in:min" : ".004",
 "wombat.all.msg-in:rate_sec" : "16.862",
 "wombat.all.msg-in:rate_sec_oneminute" : "16.112",
 "wombat.all.runafter:50th" : ".003",
 "wombat.all.runafter:95th" : ".185",
 "wombat.all.runafter:count" : "199",
 "wombat.all.runafter:max" : "7.832",
 "wombat.all.runafter:min" : ".002",
 "wombat.all.runafter:rate_sec" : "16.878",
 "wombat.all.runafter:rate_sec_oneminute" : "16.112",
 "wombat.brain.calls:50th" : "2.82",
 "wombat.brain.calls:95th" : "5.177",
 "wombat.brain.calls:count" : "198",
 "wombat.brain.calls:max" : "6.772",
 "wombat.brain.calls:min" : "1.183",
 "wombat.brain.calls:rate_sec" : "16.787",
 "wombat.brain.calls:rate_sec_oneminute" : "15.928",
 "wombat.brain.reschedule:50th" : "0",
 "wombat.brain.reschedule:95th" : ".013",
 "wombat.brain.reschedule:count" : "198",
 "wombat.brain.reschedule:max" : ".019",
 "wombat.brain.reschedule:min" : "0",
 "wombat.brain.reschedule:rate_sec" : "16.786",
 "wombat.brain.reschedule:rate_sec_oneminute" : "15.928",
 "wombat.brain.runs:50th" : ".004",
 "wombat.brain.runs:95th" : ".02",
 "wombat.brain.runs:count" : "198",
 "wombat.brain.runs:max" : ".051",
 "wombat.brain.runs:min" : ".002",
 "wombat.brain.runs:rate_sec" : "16.786",
 "wombat.brain.runs:rate_sec_oneminute" : "15.928",
 "wombat.hibernate.commit:50th" : ".576",
 "wombat.hibernate.commit:95th" : "3.366",
 "wombat.hibernate.commit:count" : "201",
 "wombat.hibernate.commit:max" : "12.056",
 "wombat.hibernate.commit:min" : ".242",
 "wombat.hibernate.commit:rate_sec" : "17.044",
 "wombat.hibernate.commit:rate_sec_oneminute" : "16.48",
 "wombat.hibernate.evict:50th" : ".001",
 "wombat.hibernate.evict:95th" : ".001",
 "wombat.hibernate.evict:count" : "201",
 "wombat.hibernate.evict:max" : ".003",
 "wombat.hibernate.evict:min" : "0",
 "wombat.hibernate.evict:rate_sec" : "17.052",
 "wombat.hibernate.evict:rate_sec_oneminute" : "16.48",

147

 "wombat.hibernate.flush:50th" : ".462",
 "wombat.hibernate.flush:95th" : "1.45",
 "wombat.hibernate.flush:count" : "198",
 "wombat.hibernate.flush:max" : "6.107",
 "wombat.hibernate.flush:min" : ".199",
 "wombat.hibernate.flush:rate_sec" : "16.806",
 "wombat.hibernate.flush:rate_sec_oneminute" : "15.928",
 "wombat.hibernate.openconnection:50th" : "155.41",
 "wombat.hibernate.openconnection:95th" : "155.41",
 "wombat.hibernate.openconnection:count" : "1",
 "wombat.hibernate.openconnection:max" : "155.41",
 "wombat.hibernate.openconnection:min" : "155.41",
 "wombat.hibernate.openconnection:rate_sec" : ".085",
 "wombat.hibernate.openconnection:rate_sec_oneminute" : ".184",
 "wombat.hibernate.save:50th" : "0",
 "wombat.hibernate.save:95th" : "0",
 "wombat.hibernate.save:count" : "0",
 "wombat.hibernate.save:max" : "0",
 "wombat.hibernate.save:min" : "0",
 "wombat.hibernate.save:rate_sec" : "0",
 "wombat.hibernate.save:rate_sec_oneminute" : "0",
 "wombat.refill.new:50th" : "0",
 "wombat.refill.new:95th" : "0",
 "wombat.refill.new:count" : "0",
 "wombat.refill.new:max" : "0",
 "wombat.refill.new:min" : "0",
 "wombat.refill.new:rate_sec" : "0",
 "wombat.refill.new:rate_sec_oneminute" : "0",
 "wombat.refill.retry:50th" : "0",
 "wombat.refill.retry:95th" : "0",
 "wombat.refill.retry:count" : "0",
 "wombat.refill.retry:max" : "0",
 "wombat.refill.retry:min" : "0",
 "wombat.refill.retry:rate_sec" : "0",
 "wombat.refill.retry:rate_sec_oneminute" : "0",
 "wombat_version" : "0.0.0/#1234"
}

Data is measured (depending on what it is) as:

• ...:50th: the median value of a timer.

• ...:95th: the 95th percentile of a run time

• ...:count: the number of times a time was measured

• ...:max: maximum duration

• ...:min: minimum duration

• ...:rate_sec: number of times per second the timer is triggered

• ...:rate_sec_oneminute: number of times per second the timer was triggered in the last minute

148

The fields have the following meanings (as better explained in Monitoring a running instance):

• General Wombat statistics:

◦ wombat.all.brain: how long Wombat spent making decisions

◦ wombat.all.msg-in: how long Wombat spent processing incoming messages

◦ wombat.all.runafter: how long was spent running periodic jobs

• Decision maker:

◦ wombat.brain.brain: how long was spent making decisions on calls to dial

◦ wombat.brain.calls: how long was spent placing calls

◦ wombat.brain.reschedule: time spent evicting or rescheduling calls

◦ wombat.brain.runs: how long was spent starting and stopping runs

• Database layer:

◦ wombat.hibernate.commit: time committing changes

◦ wombat.hibernate.evict: time evicting stale objects from cache

◦ wombat.hibernate.flush: time flushing database changes

◦ wombat.hibernate.save: time saving new objects

◦ wombat.hibernate.refresh: time doing a deep refresh of campaigns

◦ wombat.hibernate.openconnection: how many connections were open. Usually only
increments only on restarts.

• Fetching of calls from lists:

◦ wombat.refill.new: time spent reading new calls from lists

◦ wombat.refill.retry: time spent reading calls from retry cache

◦ wombat.refill.blacklist: time spent checking blacklists

• For each PBX Head:

◦ (AMI head name).actionsSize: actions to process

◦ (AMI head name).all: all messages

◦ (AMI head name).check: number of liveness checks

◦ (AMI head name).originate: number of originates

◦ (AMI head name).queue-size: current dialing queue size

◦ (AMI head name).fromAsterisk: number of events received from Asterisk

◦ (AMI head name).fromMaster: number of commands received from Wombat

◦ (AMI head name).connected: 1 if connected, 0 if disconnected

• Helpers

◦ wd-hlp.autorun: deferred actions

◦ wd-hlp.email: time spent sending emails

◦ wd-hlp.http: time spent doing HTTP notifications

149

• Logger

◦ wd-log.cycles: commit timer

◦ wd-log.n_logs: number of logs received to be written

• JVM stats

◦ All stats beginning with jvm_ are internal JVM stats

• Misc

◦ generatedOn: when the request was generated

◦ jmx_query_ms: total JMX query time

◦ wombat_version: the version of Wombat

All times are in milliseconds.

Adding a license key

You may add a license key to a working WombatDIaler system or query its current licensing. This is
meant for dynamic, short-term key assignment.

The following call adds key "ABCD.1234" and activates it:

http://127.0.0.1:8080/wbt/api/addkey/?op=add&key=ABCD.1234

The response will display the state of all installed keys on the system:

150

{
 "requestId" : "",
 "lockUntilComplete" : true,
 "responseStatus" : "OK",
 "responseMessage" : "",
 "toPanel" : "nopanel",
 "responseLog" : null,
 "keyText" : "",
 "isAdd" : true,
 "lLic" : [{
 "licenseId" : "DEMO070",
 "licensedTo" : "DEMO / WombatDialer 070",
 "startsOn" : "2012-12-18",
 "endsOn" : "2013-12-18",
 "currState" : "REVOKED",
 "nChannels" : 2
 }, {
 "licenseId" : "LLX1234",
 "licensedTo" : "LLX1234 / Camp3x",
 "startsOn" : "2015-07-02",
 "endsOn" : "2016-07-10",
 "currState" : "ACTIVE",
 "nChannels" : 8
 }],
 "l_px" : "257377543787",
 "l_ch" : 8,
 "processor" : "ch.loway.app.wombat.ui.svr.LicensingProcessor"
}

The value "l_ch" is the total number of licensed channels currently active, while details of existing
licenses can be seen from "lLic".

The JSON configuration API
WombatDialer exposes a JSON configuration API that lets you fully configure WombatDialer - as
you would through the GUI - using a JSON API. This makes it easy to deploy multiple instances of
Wombat for very large systems handing thousands of channels at once. It also lets you configure
campaigns to be run systematically.

General concepts

JSON API requests can be of four kinds:

• LIST: returns a paged list of objects. You can tell Wombat the page you want to read by
specifying a start offset and an expect result size. Plus, you can optionally send along a filter
parameter that will be used to further refine the results.

• EDIT: you push a JSON object to be added to the Wombat database. If you define a primary key
for the object, the object will be updated; if the key is empty (as set to JSON null) then the object

151

will be added. A basic sanity check will be performed on inserts and updates. The result of an
update is typically the first page of results.

• DELETE: The JSON object will be deleted. The object must include a primary key to tell Wombat
which object is to be deleted.

• MOVE UP/DOWN: on some lists (e.g. reschedule rules) it is possible to move an object up or
down in the list.

You specify the operation that is to be performed by passing the following parameters:

• mode: shall be L for list, E for editing, D for delete, MU and MD to move the object up and down.
If not specified, listing is assumed.

• data: the JSON object itself. This is not needed when listing.

• parent: some objects depend on other objects being selected first (see the description of
dependent objects below). This is the primary key of the main object that holds those sub-
objects.

• from: the beginning of the list to be returned. If missing, zero is assumed.

• items: the maximum number of items to be returned. If missing, 100 is used.

• query: a string that is to be searched in text fields. Depends on the object - this behaves like the
search boxes you see on the GUI.

• For any JSON query, you need to send Wombat an active user who holds the grants to perform
the required operation, passing it as a Basic HTTP authentication.

For example, the following query lists available trunks through the popular curl command-line
HTTP client:

curl --user demoadmin:demo -i -X POST
"http://127.0.0.1:8080/wombat/api/edit/trunk/?mode=L"

The result will be something like:

152

{
 "status" : "OK",
 "error" : "",
 "results" : [{
 "sys_dt_creazione" : "2015-03-18 17:02:46",
 "sys_user_creazione" : "Demo Admin",
 "sys_dt_modifica" : "",
 "sys_user_modifica" : "-",
 "trunkId" : 1,
 "astId" : {
 "sys_dt_creazione" : "2015-03-18 17:02:29",
 "sys_user_creazione" : "Demo Admin",
 "sys_dt_modifica" : "2015-03-23 15:49:45",
 "sys_user_modifica" : "Demo Admin",
 "id" : 1,
 "description" : "Asterisk Server",
 "ipAddress" : "127.0.0.1",
 "login" : "hello",
 "password" : "kitty",
 "port" : 5038,
 "unit_len" : 50,
 "msg_per_unit" : 5,
 "securityKey" : "",
 "state" : "DOWN"
 },
 "name" : "My Trunk",
 "dialstring" : "Local/${num}@from-internal/n",
 "capacity" : 10,
 "securityKey" : ""
 }],
 "allResults" : 1,
 "startFrom" : 0,
 "nRecords" : 1,
 "timeMs" : 12
}

The JSON response always includes:

• a status that should be OK if all went well. If something went wrong, you will have a description
in the error field (usually a Java stack trace).

• a list named results that may include zero or more elements. These are the objects you are
querying.

• an estimated size for all possible results to this query passed as allResults.

• the point in the list of results from where results are sent back (startFrom) and the amount of
records on the current page (nRecords).

• how long the operation took on the server, expressed in milliseconds, as timeMs.

If you want to insert or upgrade an object, you first need to save it as a JSON entity. All objects

153

specify a primary key that you must use to make sure that the object stays the same during updates.
Any access information - who created and updated the object, and when - is updated automatically.

So to change the name of the previous trunk, you could create a file called newtrunk.json that
contains:

{
 "trunkId" : 1,
 "astId" : {
 "id" : 1
 },
 "name" : "NewName",
 "dialstring" : "Local/${num}@from-internal/n",
 "capacity" : 10,
 "securityKey" : ""
}

Note that:

• We use the trunkId we were supplied by reading, as it is the primary key for this object.

• All user and time-stamp information were removed. There is no harm in leaving it in, but it will
not be used when updating.

• Any inner objects (like, in our example, the Asterisk server) will NOT be updated on the same
query. It is safe to remove everything but the primary key (in our case id), as the object will be
loaded by primary key in order to be correctly associated. You cannot associate to objects that
are not existing at the moment the request is issued.

We can then push this new object by issuing:

curl --user demoadmin:demo -i -X POST --data-urlencode data@newtrunk.json
"http://127.0.0.1:8080/wombat/api/edit/trunk/?mode=E"

Please note that you can mix-and-match GET and POST parameters as you best see fit.

Working with dependent objects

Dependent object are objects that have a parent and that make no sense without specifying their
parent. For example, reschedule rules depend on a campaign and have no meaning outside of it. To
work with a dependent object, you must specify the primary key of its parent, like in:

curl --user demoadmin:demo -i -X POST
"http://127.0.0.1:8080/wbt/api/edit/campaign/reschedule/?parent=1"

The response will be like:

154

{
 "status" : "OK",
 "error" : "",
 "results" : [{
 "rescheduleRuleId" : 1,
 "status" : "RS_NOANSWER",
 "statusExt" : "",
 "maxAttempts" : 1,
 "retryAfterS" : 120,
 "mode" : "FIXED",
 "idx" : "1",
 "campaignId" : 1
 }],
 "allResults" : 1,
 "startFrom" : 0,
 "nRecords" : 1,
 "timeMs" : 18
}

Dependent objects always appear in the API "below" their main object, as in
"/edit/campaign/reschedule/".

In order to insert a new rule for campaign #1, you would create a new entry like:

{
 "rescheduleRuleId" : null,
 "status" : "RS_NOANSWER",
 "statusExt" : "",
 "maxAttempts" : 1,
 "retryAfterS" : 120,
 "mode" : "FIXED",
 "campaignId" : 1
}

and push it like:

curl --user demoadmin:demo -i -X POST --data-urlencode data@rrnew.json
"http://127.0.0.1:8080/wbt/api/edit/campaign/reschedule/?mode=E&parent=1"

Note that the primary key of the parent appears in both the object - as campaignId - and as parent in
the JSON query.

If we want to move the object up (MU) or down (MD), we can edit the rrnew.json file to set the new
rescheduleRuleId and:

155

curl --user demoadmin:demo -i -X POST --data-urlencode data@rrnew.json
"http://127.0.0.1:8080/wbt/api/edit/campaign/reschedule/?mode=MU&parent=1"

And to delete it we would:

curl --user demoadmin:demo -i -X POST --data-urlencode data@rrnew.json
"http://127.0.0.1:8080/wbt/api/edit/campaign/reschedule/?mode=D&parent=1"

Using the JSON API in practice

• Issue a list query using the shell to see available objects and how they are represented.

• To create a new object, create it manually from the GUI and read it through JSON to see how it
"looks like".

• The primary key for any object appears in the object definition

• When listing objects, always take advantage of paged queries if you think that there might be
more than a hundred objects returned. Reading and serializing thousands or tens of thousands
of elements at once is not a good idea! On the other hand, returning hundreds of thousands of
objects, 500/1000 at a time, is usually safe. Remember that it is important to avoid running
extremely expensive operations that might impact the dialer itself by using too much CPU,
contending the database or - worse - crashing the JVM by exhausting all of its available RAM! So
while it is hard to put general rules that depend on the kind of hardware you are running and
on the current load, it is always better to err on the side of caution.

• Objects are usually returned in descending order of insertion, so your shiny new object is
typically the first one returned.

Available JSON APIs

The URL expressed in the table below are only the URL fragments that have to be appended to your
WombatDialer API main URL - for example, if the table lists asterisk as the fragment, the URL will
be http://127.0.0.1:8080/wbt/api/edit/asterisk/ (note the mandatory trailing slash).

Table 4. JSON API

URL fragment Description Primary key
name

Depends on? Moves
Up/Down

Security key

asterisk Asterisk
servers

id - No ADMIN

ep End-points epId - No ADMIN

trunk Trunks trunkId - No ADMIN

oh Opening Hours openingHourId - No OPHR

campaign Campaigns campaignId - No CAMP

campaign/ep EPs on
campaigns

- Campaign No CAMP

156

http://127.0.0.1:8080/wbt/api/edit/asterisk/

URL fragment Description Primary key
name

Depends on? Moves
Up/Down

Security key

campaign/trun
k

Tks on
campaigns

- Campaign No CAMP

campaign/list Lists on
campaigns

cclId Campaign Yes CAMP

campaign/resc
hedule

Reschedule
Rules

rescheduleRule
Id

Campaign Yes CAMP

campaign/disp
osition

Cmp.
Dispositions

dispositionId Campaign Yes CAMP

campaign/oh Cmp. Opening
Hours

cohId Campaign Yes CAMP

list A call list listId - No LIST

list/record Numbers on a
list

callId List No LIST

list/logs Called
numbers

id List No LIST

Notes:

• OpeningHours are composite objects, so any inner rule is handled as a private JSON structure.

• Campaign EPs and Trunks are checked for uniqueness, as they do not have an inner order.
Wombat will make sure that they cannot be added more than once.

• A field named idx is used to track the position of items in a sorted list.

The JSON Live and Reporting API
The JSON live API lets you query the state of the system as seen from the Live and Reports page.

The following table shows a succinct description of what is available.

URL fragment Description Result key Depends on? Security key

live/calls Live calls - - RT

live/runs Active campaigns - - RT

reports/runs Runs for period hoppercampId from / to REPORT

reports/stats Stats for runs - id REPORT

reports/logs Logs for runs - id/from/items REPORT

Live Calls

You can get a list of live calls and available campaigns by issuing:

157

curl --user demoadmin:demo -i -X POST "http://127.0.0.1:8080/wombat/api/live/calls/"

The results includes:

• A list of possible campaigns, their IDs and whether they are running

• A list of live calls, under "hopperState"

For example:

{
 "status" : "OK",
 "error" : "",
 "timeMs" : 9,
 "result" : {
 "requestId" : "",
 "lockUntilComplete" : false,
 "responseStatus" : "OK",
 "responseMessage" : "",
 "toPanel" : "API_CALL",
 "responseLog" : null,
 "campaigns" : [{
 "campaignId" : 1,
 "name" : "My Campaign",
 "isRunning" : true,
 "secKey" : ""
 }],
 "asterisks" : [],
 "hopperState" : [{
 "hopperCallId" : 554418377,
 "number" : "12345678991",
 "state" : "DIALLING",
 "trunk" : "MyTrunk",
 "astServer" : "A44",
 "trunk_size" : 10,
 "endpoint" : "ep8",
 "campaignRun" : "test 15.03.18 17:04:32",
 "tst_originate" : 1427475059650,
 "tst_connect" : 0,
 "tst_terminate" : 0,
 "astUnique" : "1427475059.7189",
 "astChannel" : "Local/12345678991@wdtrunk-00000dcf;1",
 "nRetry" : 0,
 "statusExt" : "",
 "subEp" : "",
 "bridgedChan" : ""
 }]
 }
}

158

Live Campaigns

You can get information on Live campaigns by issuing:

curl --user demoadmin:demo -i -X POST "http://127.0.0.1:8080/wombat/api/live/runs/"

The result includes an item called "campaigns" where you can see the live status:

{
 "status" : "OK",
 "error" : "",
 "timeMs" : 2404,
 "result" : {
 "requestId" : "",
 "lockUntilComplete" : false,
 "responseStatus" : "OK",
 "responseMessage" : "",
 "toPanel" : "API_CALL",
 "responseLog" : null,
 "action" : "NONE",
 "hopcampId" : 0,
 "campaignId" : 0,
 "campaigns" : [{
 "name" : "cccd",
 "startedAt" : "15.03.18 17:04:32",
 "campaignId" : 1,
 "hoppercampId" : 2,
 "priority" : 10,
 "state" : "IDLE",
 "n_calls_completed" : 0,
 "n_open_retries" : 0,
 "n_calls_attempted" : 0,
 "n_est_remaining_calls" : 0,
 "secondsSinceStarted" : 771835,
 "listName" : "#0",
 "listPos" : 0,
 "timeDow" : "1234567",
 "timeStartHr" : "000000",
 "timeEndHr" : "235959",
 "predictiveModel" : "OFF",
 "boostFactor" : 1.0,
 "dowAsString" : "Su | Mo | Tu | We | Th | Fr | Sa"
 }]
 }
}

159

Reports: runs in period

This call gets you a list of runs (identified by their "hoppercampId") that were made in a specific
period:

curl --user demoadmin:demo -i -X POST
"http://127.0.0.1:8080/wbt/api/reports/runs/?from=2000-01-01.00:00:00&to=2020-01-
01.00:00:00"

Both the "from" and "to" parameters are mandatory.

The result is a list of runs:

160

{
 "status" : "OK",
 "error" : "",
 "timeMs" : 69,
 "result" : {
 "requestId" : "",
 "lockUntilComplete" : true,
 "responseStatus" : "OK",
 "responseMessage" : "",
 "toPanel" : "API_CALL",
 "responseLog" : null,
 "dateFrom" : 946681200000,
 "dateTo" : 1577833200000,
 "campaignsAndRuns" : [{
 "name" : "test",
 "startedAt" : "15.03.18 17:04:32",
 "campaignId" : 1,
 "hoppercampId" : 2,
 "priority" : 10,
 "state" : "RUNNING",
 "n_calls_completed" : 91,
 "n_open_retries" : 109,
 "n_calls_attempted" : 91,
 "n_est_remaining_calls" : 9911,
 "secondsSinceStarted" : 782167,
 "listName" : "appero",
 "listPos" : 0,
 "timeDow" : "1234567",
 "timeStartHr" : "000000",
 "timeEndHr" : "235959",
 "predictiveModel" : "OFF",
 "boostFactor" : 1.0,
 "dowAsString" : "Su | Mo | Tu | We | Th | Fr | Sa"
 }]
 }
}

Report: stats for runs

This call runs statistics for a set of runs, identified by the parameter "id" that can be present
multiple times.

curl --user demoadmin:demo -i -X POST
"http://127.0.0.1:8080/wbt/api/reports/stats/?id=1&id=7&id=123"

The result is a set of stats by call type:

161

{
 "status" : "OK",
 "error" : "",
 "timeMs" : 8,
 "result" : {
 "requestId" : "",
 "lockUntilComplete" : true,
 "responseStatus" : "OK",
 "responseMessage" : "",
 "toPanel" : "API_CALL",
 "responseLog" : null,
 "campaignsToConsider" : [1, 7, 123],
 "statsOut" : [{
 "gbCampaignId" : 1,
 "gbState" : "RS_BUSY",
 "gbTrunk" : "A44 NewName",
 "gbStateExt" : "",
 "nCalls" : 90,
 "totWaitPre" : 10,
 "totWaitAfter" : 271,
 "totTalk" : 0
 }, {
 "gbCampaignId" : 1,
 "gbState" : "RS_NUMBER",
 "gbTrunk" : "A44 NewName",
 "gbStateExt" : "",
 "nCalls" : 1,
 "totWaitPre" : 0,
 "totWaitAfter" : 0,
 "totTalk" : 0
 }]
 }
}

Reports: logs by runs

Given a set of runs, gets the details of calls placed.

Parameters:

• from: the start of results in the log set

• items: how many logs you want back (page length)

• id: the run ids - can be repeated multiple times

curl --user demoadmin:demo -i -X POST
"http://127.0.0.1:8080/wbt/api/reports/logs/?from=0&items=3&id=1&id=2&id=123"

162

Do not forget to set "sane" paging criteria, to avoid getting a result set that’s too
large for available memory.

The results look like:

{
 "status" : "OK",
 "error" : "",
 "timeMs" : 12,
 "results" : [{
 "dim_id" : 1,
 "listId" : 1,
 "listName" : "GoodList",
 "trunkId" : 1,
 "trunkName" : "NewName",
 "astId" : 1,
 "astName" : "",
 "epId" : 4,
 "epName" : "ep7",
 "campId" : 1,
 "campName" : "test",
 "runId" : 2,
 "runName" : "15.03.18 17:04:32",
 "runStarted" : 1426694673000,
 "id" : 1,
 "callId" : 1,
 "callNumber" : "1",
 "numberDialed" : "1",
 "attributes" : "IN:puts ^OUT:put",
 "attempted" : 1427474910000,
 "waitPre" : 1,
 "waitAfter" : 111,
 "talk" : 0,
 "statusCode" : "RS_NUMBER",
 "astChannel" : "",
 "astUnique" : "",
 "nRetry" : 0,
 "statusExt" : "",
 "nextRetry" : 0,
 "wombatId" : "515144647",
 "subEp" : "",
 "bridgedChannel" : ""
 }],
 "allResults" : 91,
 "startFrom" : 0,
 "nRecords" : 3
}

163

The result set is the same you’d get for the edit/list/logs call, but with different
search criteria.

HTTP/S life-cycle notifications of calls
In order to enable HTTP life-cycle notifications, you must set a URL in your campaign definition
that points to an HTTP script. This causes WD to POSTs the result of each call to your HTTP server.

 Both "http" and "https" URLs are allowed.

On the server, you’ll have a script that accepts notification, like the simple PHP script that follows:

<?
$out = "";
foreach($_POST as $name => $value) {
 $out .= "$name:$value ";
}
print($out);
error_log("RQ: $out",0, "", "");
?>

The script above basically logs all activity on the HTTP error log. What you get is a sequence of calls
like:

RQ: num:5551234 reschedule:0 I_MM:30 extstate:
 state:RS_REJECTED I_HH:10 retry:0
RQ: num:5556785 reschedule:0 I_MM:00 extstate:
 state:RS_REJECTED I_HH:11 retry:0
RQ: num:5552012 reschedule:0 I_MM:30 extstate:
 state:RS_REJECTED I_HH:11 retry:0
RQ: num:5551234 reschedule:0 I_MM:30 extstate:1
 state:TERMINATED I_HH:10 O_APPT:APPE retry:0
RQ: num:5556785 reschedule:300 I_MM:00 extstate:
 state:RS_NOANSWER I_HH:11 retry:0
RQ: num:5552012 reschedule:0 I_MM:30 extstate:2
 state:TERMINATED I_HH:11 O_APPT:PSYC retry:0
RQ: num:5556785 reschedule:300 I_MM:00 extstate:0
 state:TERMINATED I_HH:11 retry:1
RQ: num:5556785 reschedule:300 I_MM:00 extstate:0
 state:TERMINATED I_HH:11 retry:2
RQ: num:5556785 reschedule:300 I_MM:00 extstate:0
 state:TERMINATED I_HH:11 retry:3
RQ: num:5556785 reschedule:0 I_MM:00 extstate:0
 state:TERMINATED I_HH:11 retry:4

You can see that for each call:

164

• num is set to the number dialed

• state is the call state at its completion

• extstate is the call’s extended state, if present

• retry is the retry counter

• reschedule is set to the time in seconds to be waited before a reschedule is attempted; if no
reschedule is required, it will be set to zero

• all input attributes (the ones you set with the telephone number) are passed along prepended
by I_

• all output attributes (the ones you set in the Asterisk dialplan), if any, are passed along
prepended by O_

This way you can easily create an integration script that stores the results of the call on a database
or passes them along for further processing.

The HTTP notification server works asynchronously on a dedicated thread, so it is possible that
there is some latency if your script has long completion times. The notification server does not retry
on errors.

165

System configuration

Security keys
The following security keys are reserved for use by WombatDialer and have a pre-defined meaning.

Table 5. System Keys

Key Meaning

USER All interactive users must hold this key

RT User can access the Live page

REPORT User can run reports

ADMIN User can edit configuration and users

SYSLOG User can view the system log

LIST User can view lists

CAMP User can view campaigns

COPY User can copy campaigns

LICKEY User can add/edit licenses

V_WBT User can view the dialer status

CTRL_WBT User can start/stop the dialer

OPHR User can edit Opening Hours

DEBUG_AMI User can see the extended AMI status. Do not
turn on in production unless explicitly told so.

All other strings can be freely used as "feature" security keys.

Default users
The following users ship in the default database installation.

They are meant as a template - you should create your own or at least change the
default passwords. Failure to do so is a major security risk.

Table 6. Default users

Login Password Class Notes

demoadmin demo ADMIN

demouser demo USER

166

For more information…
To know more about WombatDialer in your specific setting or inquire about commercial licenses,
please feel free to contact Loway.

The latest version of WombatDialer can be found on the home page located at the address
http://wombatdialer.com

There is a WombatDialer section in the QueueMetrics users forum for mutual support,
troubleshooting and ideas at http://forum.queuemetrics.com

To stay updated on the latest developments of WombatDialer, you may:

• read our blog at https://www.wombatdialer.com/blog

• find some examples at https://github.com/Loway/OpenWombatDialerAddOns

• join the Facebook group at http://www.facebook.com/WombatDialer

• read our Twitter feed at http://twitter.com/WombatDialer

167

http://wombatdialer.com
http://forum.queuemetrics.com
https://www.wombatdialer.com/blog
https://github.com/Loway/OpenWombatDialerAddOns
http://www.facebook.com/WombatDialer
http://twitter.com/WombatDialer

	The WombatDialer User Manual
	Table of Contents
	What is WombatDialer?
	Why was WombatDialer created?
	Key features
	Typical usage scenarios

	Getting started with WombatDialer
	Install WombatDialer
	Set up WombatDialer
	Create a list of numbers to be called
	Create a new campaign
	Create reschedule rules
	Run your first campaign
	Run a report on your campaign
	Where to go from here

	WombatDialer Concepts
	The architecture of WombatDialer
	Asterisk servers
	Trunks
	End-points
	Call lists and call records
	Campaigns
	AMD & Fax detection
	Campaign runs
	Opening Hours
	Opening Hours Inspector
	Call logs
	Users and security

	Running WombatDialer
	Understanding the GUI
	Controlling the dialer
	The Live page
	The Copy Campaigns Panel
	The Dialer State Page
	Running campaign reports
	Importing and exporting call lists
	The License page

	QueueMetrics integration
	Installation
	Understanding QueueMetrics integration
	Real-time monitoring
	Reporting
	Using the agent’s page

	A WombatDialer Cookbook
	A social media dialer
	Helping Wombats one carrot at a time
	Outbound IVRs and dr. Strangelove
	Understanding queue end-points
	A custom QueueMetrics integration
	Elastix queue call-backs
	Automated recall of lost inbound calls
	Preview dialing with QueueMetrics
	Effective answering-machine detection

	Administering WombatDialer
	Installing
	Upgrading
	Starting and stopping
	Backing up
	Logs and logging
	Monitoring a running instance
	Troubleshooting a running instance

	API reference
	Controlling Asterisk from WD
	Controlling WD from Asterisk
	Controlling WD over HTTP
	The JSON configuration API
	The JSON Live and Reporting API
	HTTP/S life-cycle notifications of calls

	System configuration
	Security keys
	Default users

	For more information…

