

Accessing QueueMetrics through its
XML-RPC interface

Loway SA

Version 21.04, 2018/04/20

Table of Contents
Accessing QueueMetrics through its XML-RPC interface . 1

Document contents. 2

Revision history . 2

What is XML RPC? . 4

Which functions does QueueMetrics export as XML-RPC? . 4

Example: accessing QueueMetrics from Python . 4

Example: Accessing QueueMetrics from Java . 5

Example: Accessing QueueMetrics from PHP . 7

Example: Accessing QueueMetrics from JavaScript . 10

Understanding call parameters . 12

The method QM.stats. 12

The method QM.realtime . 13

The method QM.qareport. 13

The method QM.qaformreport . 14

The method QM.qaformsummary . 15

The method QM.qaformgrading. 15

The method QM.qacallstograde . 16

The method QM.auth . 17

The method QM.authenticate . 17

The method QM.findAudio . 19

The method QM.insertRecordTag . 20

The method QM.tskAddNote . 20

The method QM.tskAddTraining . 21

The method QM.tskAddMeeting. 21

The method QM.setActivationKey . 22

The method QM.broadcastMessage. 23

The method QM.getQueuesForAgent . 23

The method QM.getPauseCodesForAgent . 24

Understanding results . 26

Using an external auth source for QueueMetrics. 27

Log on procedure. 27

XML-RPC call parameters. 28

Dynamic blocks in QueueMetrics . 30

Plain-HTML data sources (method XS01) . 31

XML-RPC data blocks (method XS02) . 31

JSON data blocks (method XS03) . 32

Styling return values for XML-RPC and JSON data blocks . 33

Appendix I: Response block names . 35

Response block names for QM.stats . 35

Response block names for QM.realtime. 35

Response block names for QM.qareport . 35

Response block names for QM.qaformreport and QM.qaformgrading . 36

Response block names for QM.qaformsummary. 37

Response block names for QM.qacallstograde . 37

Response block names for QM.auth . 37

Response block names for QM.findAudio . 38

Response block names for QM.insertRecordTag . 38

Appendix II: A short list of XML-RPC libraries . 39

Accessing QueueMetrics through its XML-
RPC interface


The XML-RPC API is no longer supported. Please use the JSON API instead. This
manual is provided for historical reference only.

1

Document contents


If you are starting with a new integration project, we suggest that you use the
newer JSON APIs that are more powerful and easier to use.

This document details how to access and use the XML-RPC access functionality in Loway
QueueMetrics. This makes it possible for your programs to leverage the power of QueueMetrics by
calling a very simple API, with bindings available in nearly every programming language.

Revision history
• Nov 13, 2006: First draft

• Mar 22, 2007: Added PHP example

• Apr 13, 2007: "raw" blocks available

• May 11, 2007: real-time blocks and auth server

• Jun 11, 2007: multi-stint calls

• Nov 11, 2007: enter-queue position and schedule adherence

• Nov 10, 2008: Added Outcomes data blocks and external XML-RPC Authentication description

• Jan 14, 2009: Added support for JavaScript

• Feb 11, 2009: Moved to AsciiDoc format for ease of updating

• Feb 17, 2009: Added QM.findAudio methods

• Aug 07, 2009: Added QM.qareport and QM.qaformreport reports

• Aug 10, 2009: Added AgentsDO.AnsCallsCG for "Answered calls by custom group" reporting

• Dec 2, 2009: Added QM.qaformsummary report

• Jul 8, 2010: Added new blocks "Call Overview", "Traffic analysis", "Agent performance"

• Jul 21, 2010: Added QM.qaformgrading method

• Aug 20, 2010: Added new block "Inclusive Answered SLA"

• Oct 1, 2010: Referenced QM manual for possible data blocks.

• Dec 2, 2010: Added new QA related optional parameter, Added new QM.tskAddNote and
QM.qacallstograde methods

• May 16, 2011: New method setActivationKey()

• Oct 6, 2011: Added new QM.tskAddTraining methods. Modified QM.tskAddNote in order to
receive the processField

• Oct 7, 2011: Added new QM.broadcastMessage method.

• Oct 24, 2011: Added new QM.tskAddMeeting method.

• Nov 14, 2011: New method QM.authenticate()

• Nov 23, 2011: New method QM.insertRecordTag()

2

• Mar 6, 2012: New methods QM.getQueuesForAgent() and QM.getPauseCodesForAgent()

• Nov 15, 2012: Updated QM.qaformsummary report for non scoring questions

• Jan 21, 2013: New PHP library

• Nov 2, 2013: External data sources

• Jun 13, 2014: JSON API available

• Jun 01, 2015: Centralized CBT tracking

3

What is XML RPC?
Wikipedia defines XML-RPC as:

XML-RPC is a remote procedure call protocol which uses XML to encode its calls and HTTP as a
transport mechanism. It is a very simple protocol, defining only a handful of data types and
commands, and the entire description can be printed on two pages of paper. This is in stark contrast
to most RPC systems, where the standards documents often run into the thousands of pages and
require considerable software support in order to be used.

This means that, whatever your programming language of choice, you can surely find an XML-RPC
library for it; and once you have the library, connection to QueueMetrics is straightforward.


QueueMetrics also offers a JSON API that is easier to work with and offers
extended functionality. If you are starting with a new project, you should
preferably use the JSON API.

Which functions does QueueMetrics export as XML-
RPC?
QueueMetrics exports the full results of an analysis in XML-RPC, so you can access whatever
information you feel you may need. Information is divided into blocks, i.e. sets of data that roughly
correspond to the tables QM uses for its own output.

This means that you can build software that sits on top of QueueMetrics and uses its result as a
starting point for further elaboration, e.g.:

• Visualizing results with complex graphs currently not supported by QueueMetrics

• Computing period comparison analyses (one period versus another period)

• Accessing agent presence data for payroll computation

Of course there are many possible scenarios where you might want to use such information.

The XML-RPC interface is available in all version of QueueMetrics starting from version 1.3.1.



If you plan to use the XML-RPC, we suggest starting by installing the open XML-RPC
Query Browser available at https://github.com/Loway/
QueueMetricsXmlRpcBrowser so you can familiarize yourself with the interface
right from your browser.

Example: accessing QueueMetrics from Python
In this example we’ll see how easy it is to access QueueMetrics from a scripted language like
Python. You can enter the following statements interactively using a Python IDE like IDLE, or make
them a part of a larger program.

4

https://github.com/Loway/QueueMetricsXmlRpcBrowser
https://github.com/Loway/QueueMetricsXmlRpcBrowser

The following code connects to the XML-RPC port of a QueueMetrics instance running at
http://qmserver:8080/qm130 and asks for a couple of tables, namely the distribution of answered
calls per day and the Disconnection causes.

> import xmlrpclib
> server_url = 'http://qmserver:8080/qm130/xmlrpc.do';
> server = xmlrpclib.Server(server_url);
> res = server.QM.stats("queue-dps", "robot", "robot","", "", "2005-10-10.10:23:12",
"2007-10-10.10:23:10","", ['KoDO.DiscCauses', 'CallDistrDO.AnsDistrPerDay'])

> res.keys()
['CallDistrDO.AnsDistrPerDay', 'result', 'KoDO.DiscCauses']

> res['result']
[['Status', 'OK'], ['Description', ''], ['Time elapsed (ms)', 3008], ['QM Version',
'1.3.1']]

> res['result'][2][1]
3008

As you can see, it only takes four lines of Python code to connect to QueueMetrics and get all the
results back!

Example: Accessing QueueMetrics from Java
This is an example functionally equivalent to the one above in Python, but it’s written in Java using
the Redstone XML-RPC client library.

5

http://qmserver:8080/qm130

import java.io.IOException;
import java.util.HashMap;
import java.net.URL;
import redstone.xmlrpc.XmlRpcClient;
import java.util.ArrayList;

public class xmlRpcTestClient {
 public void perform() {
 String stUrl = "http://server:8080/qm130/xmlrpc.do";
 System.setProperty(
 "org.xml.sax.driver",
 "org.apache.xerces.parsers.SAXParser"
);

 try {
 XmlRpcClient client = new XmlRpcClient(stUrl, false);

 ArrayList arRes = new ArrayList();
 arRes.add("OkDO.AgentsOnQueue");
 arres.add("KoDO.DiscCauses");
 arRes.add("KoDO.UnansByQueue");
 arRes.add("DetailsDO.CallsKO");

 Object[] parms = { "queue-dps", "robot", "robot",
 "", "", "2005-10-10.10:23:12",
 "2007-10-10.10:23:10",
 "", arRes };

 Object token = client.invoke("QM.stats", parms);
 HashMap resp = (HashMap) token;
 System.out.println("Resp: " + resp);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public static void main(String[] args) {
 xmlRpcTestClient c = new xmlRpcTestClient();
 try {
 c.perform();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

We’ll have to explicitly set which XML parser to use; for the rest, the code looks very much alike the
Python one.

6

Example: Accessing QueueMetrics from PHP
This example is based on PHP’s xmlrpc module, available from http://phpxmlrpc.sourceforge.net/.
The XML_RPC module that comes with PEAR does not support HTTP/1.1 and so it will likely not
work with recent version of Apache Tomcat.

<h1>A QueueMetrics XML-RPC client in PHP</h1>
<?
// import the library here
include "./xmlrpc.inc";

$qm_server = "10.10.10.10"; // the QueueMetrics server address
$qm_port = "8080"; // the port QueueMetrics is running on
$qm_webapp = "queuemetrics"; // the webapp name for QueueMetrics

// set which response blocks we are looking for
$req_blocks = new xmlrpcval(array(
 new xmlrpcval("DetailsDO.CallsOK"),
 new xmlrpcval("DetailsDO.CallsKO")
), "array");

// general invocation parameters - see the documentation
$params = array(
new xmlrpcval("queue-dps"),
 new xmlrpcval("robot"),
 new xmlrpcval("robot"),
 new xmlrpcval(""),
 new xmlrpcval(""),
 new xmlrpcval("2007-01-01.10:23:12"),
 new xmlrpcval("2007-10-10.10:23:10"),
 new xmlrpcval(""),
 $req_blocks
);

$c = new xmlrpc_client("$qm_webapp/xmlrpc.do", $qm_server, (integer) $qm_port);
$c->return_type = 'phpvals'; // let client give us back php values instead of
xmlrpcvals
$resp =& $c->send(new xmlrpcmsg('QM.stats', $params));

if (!$resp) {
 echo 'Communication error: ' . $cli->errstr;
 exit;
}
if ($resp->faultCode()) {
 echo 'Fault Code: ' . $resp->faultCode() . "\n";
 echo 'Fault Reason: ' . $resp->faultString() . "\n";
} else {
 $val = $resp->value();
 $blocks = XML_RPC_decode($val);

7

http://phpxmlrpc.sourceforge.net/

 // now we print out the details....
 printBlock("result", $blocks);
 printBlock("DetailsDO.CallsOK", $blocks);
 printBlock("DetailsDO.CallsKO", $blocks);
}

// output a response block as HTML
function printBlock($blockname, $blocks) {
 echo "<h2>Response block: $blockname </h2>";
 echo "<table border=1>";
 $block = $blocks[$blockname];
 for ($r = 0; $r < sizeof($block); $r++) {
 echo "<tr>";
 for ($c = 0; $c < sizeof($block[$r]); $c++) {
 echo("<td>" . $block[$r][$c] . "</td>");
 }
 echo "</tr>\n";
 }
 echo "</table>";
}
?>

In this next example, the PHP code is able to submit QA grading information in order to fill a
specific form:

<?php
 // import the library here
 include "./xmlrpc.inc";

 $qm_server = "10.10.10.10"; // the QueueMetrics server address
 $qm_port = "8080"; // the port QueueMetrics is running on
 $qm_webapp = "queuemetrics"; // the webapp name for QueueMetrics

 // set which response blocks we are looking for
 $req_blocks = new xmlrpcval(array(
 new xmlrpcval("QualAssFormDO.FormStructure"),
 new xmlrpcval("QualAssFormDO.SectionValues"),
 new xmlrpcval("QualAssFormDO.Comments"),
), "array");

 // set notes we want to update
 $comments_block = new xmlrpcval(array(
 new xmlrpcval("This is a form note added with XMLRPC"),
 new xmlrpcval("This is the next form note added with XMLRPC"),
), "array");

 // set QA infor scores to be
 // Each item code should be defined.
 // Each item will be associated to a score number

8

 // or an empty string if N/A (only for Not Mandatory fields)
 $grading_info = new xmlrpcval(array(
 'NMYN' => new xmlrpcval("", 'string'),
 'NMNUM' => new xmlrpcval("20", 'string'),
 'MNUM' => new xmlrpcval("60", 'string'),
 'MMUL' => new xmlrpcval("100", 'string'),
), "struct");

 // general invocation parameters - see the documentation
 $params = array(
 new xmlrpcval(""),
 new xmlrpcval("robot"),
 new xmlrpcval("robot"),
 new xmlrpcval("2010-06-16.12:32:00"),
 new xmlrpcval("3600"),
 new xmlrpcval("Test GUI items"),
 new xmlrpcval("1276684326.309"),
 $grading_info,
 $comments_block,
 $req_blocks
);

 $c = new xmlrpc_client("$qm_webapp/xmlrpc.do", $qm_server, (integer) $qm_port);
 $c->return_type = 'phpvals'; // let client give us back php values instead of
xmlrpcvals
 $resp =& $c->send(new xmlrpcmsg('QM.qaformgrading', $params));

 if (!$resp) {
 echo 'Communication error: ' . $cli->errstr;
 exit;
 }

 if ($resp->faultCode()) {
 echo 'Fault Code: ' . $resp->faultCode() . "\n";
 echo 'Fault Reason: ' . $resp->faultString() . "\n";
 } else {
 $val = $resp->value();
 $blocks = XML_RPC_decode($val);

 // now we print out the details....
 printBlock("result", $blocks);
 printBlock("QualAssFormDO.FormStructure", $blocks);
 printBlock("QualAssFormDO.SectionValues", $blocks);
 printBlock("QualAssFormDO.Comments", $blocks);
 }

 // output a response block as HTML
 function printBlock($blockname, $blocks) {
 echo "\nResponse block: $blockname \n";
 $block = $blocks[$blockname];

9

 for ($r = 0; $r < sizeof($block); $r++) {
 echo "\n";
 for ($c = 0; $c < sizeof($block[$r]); $c++) {
 echo($block[$r][$c] . "\t");
 }
 }
 }
?>

As you can see, it is very similar to the other programming languages, and reading into the results
is simply a matter of selecting the correct block and then accessing the data cell by row and column.
The added complexity is due to the explicit error condition check and result printout.

Example: Accessing QueueMetrics from JavaScript
In order to access the XML-RPC interface from JavaScript, you need to use an adaptor library. We
have been able to successfully use a library called JSON-XML-RPC that can be found at
http://code.google.com/p/json-xml-rpc/ in a file called rpc.js

Generally speaking, a JavaScript client can make requests only against the same server that is
serving the HTML page, therefore you need to install it on the same server as QueueMetrics,
creating a separate webapp.

<html>
<head>
<title>javascript_client.html</title>
<script src="rpc.js"></script>
</head>
<body>
<h1>QueueMetrics JavaScript XML-RPC example </h1>
<script>
var server = "/DAILY/xmlrpc.do";

function run() {
 try {
 var service = new rpc.ServiceProxy(server, {
 asynchronous:false,
 protocol: "XML-RPC",
 methods: ["QM.stats", "QM.realtime", "QM.auth"]
 });
 res = service.QM.stats("q1", "robot", "robot","", "",
 "2005-10-10.10:23:12", "2009-10-10.10:23:10","",
 ["KoDO.DiscCauses", "CallDistrDO.AnsDistrPerDay"]
);
 document.getElementById("RESULT").innerHTML = plotBlocks(res);
 } catch(e) {
 alert("Error raised: " + e);
 }

10

http://code.google.com/p/json-xml-rpc/

}

function plotBlocks(hmBlocks) {
 s = "";
 for (var i in hmBlocks) {
 s += "<h2>Block: " + i + "</h2>";
 s += plotBlock(hmBlocks[i]);
 }
 return s;
}

function plotBlock(arBlock) {
 s = "";
 for (r =0; r < arBlock.length; r++) {
 s += "<tr>";
 for (c = 0; c < arBlock[r].length; c++) {
 s += "<td>" + arBlock[r][c] + "</td>";
 }
 s += "</tr>";
 }
 return "<table border=1>" + s + "</table>";
}
</script>

<input type="button" value="Click me!" onclick="run();" >
<div id="RESULT"></div>

</body>
</html>

As you can see, the code is actually very similar to the Python one. The only important difference
here is that the names of the methods have to be explicitly declared.

11

Understanding call parameters
There are a number of methods exported by the XML-RPC interface, and they are used for different
reasons:

• QM.stats: get the main historical stats

• QM.realtime: get the real time stats (available since QM 1.3.5)

• QM.qareport: get the Quality Assessment statistics (available since QM 1.6.0)

• QM.qaformreport: get some Quality Assessment Forms details (available since QM 1.6.0)

• QM.qaformsummary: get Quality Assessment statistics related to the same form (available since
QM 1.6.0)

• QM.qaformgrading: fill a QA form with the specified scores and/or comments (available since
QM 12.01)

• QM.auth: use QueueMetrics as an auth server for third party software (available since QM 1.3.5)

The method QM.stats
This is the main method exported, its XML-RPC name being QM.stats. It takes a number of
arguments, all of which must be supplied and must have the correct data type. They are:

1. (String) Queue name or names: the set of queues that must be included in the analysis. They
must be separated by a "|" symbol if more than one queue is passed. The queue name is the
internal Asterisk queue name.

2. (String) Access username: this one must be the user name of an active user holding the key
ROBOT.

3. (String) Access password: this must be the clear-text password of the given user name

4. (String) Logfile - always leave blank.

5. (String) Period - always leave blank.

6. (String) Start of period. This must be written in exactly the format yyyy-mm.dd.hh.mm.ss (do
not forget the dot between the date and the hour).

7. (String) End of period. Same format as start of period

8. (String) Agent filter - an agent’s name, like "Agent/101" that must be the filter for all the relevant
activity

9. (List) A list of the required analysis to be returned to the client. Each analysis name must be
supplied as a String.

This call will start up a session in QueueMetrics, check if the user exists and has the privilege to run
the report, run the analysis, prepare the required results and return them. At the end of the call, the
QueueMetrics session is destroyed so no data is kept for further elaboration.

This means that it’s usually the most efficient thing to do to request all needed response
information at once, but it’s wise to limit yourself to the minimum data set you will actually need,

12

as each block takes up CPU and memory space to be marshaled between the native Java format, the
intermediate XML format and the resulting client format.

It is also advisable to run large data set analysis at night time or when nobody is accessing the
system, as they may take quite a lot of RAM and CPU, and this may slow down QueueMetrics for the
other live users.

The method QM.realtime
This method is very similar to QM.stats but it is used to retrieve the real time stats. It must be called
with the following parameters:

1. (String) Queue name or names: the set of queues that must be included in the analysis. They
must be separated by a "|" symbol if more than one queue is passed. The queue name is the
internal Asterisk queue name.

2. (String) Access username: this one must be the user name of an active user holding the key
ROBOT.

3. (String) Access password: this must be the clear-text password of the given user name

4. (String) Logfile - always leave blank.

5. (String) Agent filter - an agent’s name, like "Agent/101" that must be the filter for all the relevant
activity

6. (List) A list of the required analysis to be returned to the client. Each analysis name must be
supplied as a String.

The same suggestions that are given for QM.stats apply.



Please note that there is a difference between results produced by the XML RPC
realtime calls and the realtime statistics produced through the QueueMetrics GUI
when the key realtime.members_only is equal to true. The difference is related to
the agents list shown. Being the list of queues, in the XML RPC call, specified by a
list of names instead of a list of queue unique identifiers, it’s not possible to
correctly identify elementary queues from macro queues having the same name.
In this situation the agent list will always be calculated as the sum of all agents
associated to all elementary queues composing the macro queue, even if the macro
queue has directly assigned agents.

The method QM.qareport
This method is very similar to QM.stats but it’s used to retrieve Quality Assessment statistics. It
must be called with the following parameters:

1. (String) Queue name or names: the set of queues that must be included in the analysis. They
must be separated by a "|" symbol if more than one queue is passed. The queue name is the
internal Asterisk queue name.

2. (String) Access username: this one must be the user name of an active user holding the key

13

ROBOT.

3. (String) Access password: this must be the clear-text password of the given user name

4. (String) Start of period. This must be written in exactly the format yyyy-mm-dd.hh.mm.ss (do
not forget the dot between the date and the hour).

5. (String) End of period. Same format as start of period

6. (String) Agent filter - an agent’s name, like "Agent/101" that must be the filter for all the relevant
activity

7. (String) The form name for wich you need to have information

8. (String) The grader type used to filter out graded forms. It could be any of the following values:
"unknown", "agent", "grader", "caller". This parameter is optional and could not be present in
the function call

9. (List) A list of the required analysis to be returned to the client. Each analysis name must be
supplied as a String.

The same suggestions that are given for QM.stats apply.

The method QM.qaformreport
This method is very similar to QM.stats but it’s used to retrieve raw information about Quality
Assessment Forms. It must be called with the following parameters:

1. (String) Queue name or names: the set of queues that must be included in the analysis. They
must be separated by a "|" symbol if more than one queue is passed. The queue name is the
internal Asterisk queue name.

2. (String) Access username: this one must be the user name of an active user holding the key
ROBOT.

3. (String) Access password: this must be the clear-text password of the given user name

4. (String) Start of period. This must be written in exactly the format yyyy-mm-dd.hh.mm.ss (do
not forget the dot between the date and the hour).

5. (String) End of period. Same format as start of period

6. (String) Agent filter - an agent’s name, like "Agent/101" that must be the filter for all the relevant
activity

7. (String) The form name for wich you need to have information

8. (String) The grader type used to filter out graded forms. It could be any of the following values:
"unknown", "agent", "grader", "caller". This parameter is optional and could not be present in
the function call

9. (List) A list of the required analysis to be returned to the client. Each analysis name must be
supplied as a String.

The same suggestions that are given for QM.stats apply.

14

The method QM.qaformsummary
This method is very similar to QM.stats but it’s used to retrieve aggregated information about a
specific Quality Assessment Form. It must be called with the following parameters:

1. (String) Queue name or names: the set of queues that must be included in the analysis. They
must be separated by a "|" symbol if more than one queue is passed. The queue name is the
internal Asterisk queue name.

2. (String) Access username: this one must be the user name of an active user holding the key
ROBOT.

3. (String) Access password: this must be the clear-text password of the given user name

4. (String) Start of period. This must be written in exactly the format yyyy-mm-dd.hh.mm.ss (do
not forget the dot between the date and the hour).

5. (String) End of period. Same format as start of period

6. (String) Agent filter - an agent’s name, like "Agent/101" that must be the filter for all the relevant
activity

7. (String) The form name for wich you need to have information

8. (String) The grader type used to filter out graded forms. It could be any of the following values:
"unknown", "agent", "grader", "caller". This parameter is optional and could not be present in
the function call

9. (List) A list of the required analysis to be returned to the client. Each analysis name must be
supplied as a String.

The same suggestions that are given for QM.stats apply. The report counts the aggregated QA
statistics on calls with timestamp included in the date range specified.

The method QM.qaformgrading
This method lets you fill a QA form through an RPC-XML call. It replies with the same raw
information reported by the QM.qaformreport method and could replace it if QA parameters are
empty when calling.

1. (String) Queue name or names: the set of queues that must be included in the analysis. They
must be separated by a "|" symbol if more than one queue is passed. The queue name is the
internal Asterisk queue name.

2. (String) Access username: this one must be the user name of an active user holding the key
ROBOT.

3. (String) Access password: this must be the clear-text password of the given user name

4. (String) Start of period. This must be written in exactly the format yyyy-mm-dd.hh.mm.ss (do
not forget the dot between the date and the hour).

5. (String) End of period. This is at least the number of seconds the call was in the waiting status
(or the complete call time or a suitable number that comfortably contains the call like, for
example, 3600).

15

6. (String) The form name for wich you need to have information

7. (String) The unique identifier for the call to be graded

8. (String) The grader type used to filter out graded forms. It could be any of the following values:
"unknown", "agent", "grader", "caller". This parameter is optional and could not be present in
the function call

9. (Struct) The list of QA items score supplied as (string,string) pairs. The list should contain all
specific form items codes and their relative score. In order to specify N/A values for not
mandatory items, an empty string should be specified. If the list is left empty, no QA score will
be filled into the form

10. (List) A list of the notes to be filled in the form. Each note must be supplied as a String. If the list
is empty, no new comments will be added to the form.

11. (List) A list of the required analysis to be returned to the client. Each analysis name must be
supplied as a String.

The same suggestions that are given for QM.stats apply. The report counts the aggregated QA
statistics on calls with timestamp included in the date range specified.

The method QM.qacallstograde
1. (String) Queue name or names: the set of queues that must be included in the analysis. They

must be separated by a "|" symbol if more than one queue is passed. The queue name is the
internal Asterisk queue name.

2. (String) Access username: this one must be the user name of an active user holding the key
ROBOT.

3. (String) Access password: this must be the clear-text password of the given user name

4. (String) Start of period. This must be written in exactly the format yyyy-mm-dd.hh.mm.ss (do
not forget the dot between the date and the hour).

5. (String) End of period. This must be written in exactly the format yyyy-mm-dd.hh.mm.ss (do not
forget the dot between the date and the hour).

6. (String) The form name for wich you need to have information

7. (String) Agent filter - an agent’s name, like "Agent/101" that must be the filter for all the relevant
activity

8. (List) A list of constraints used by the engine to filter out all relevant forms (see below for the
correct syntax)

9. (List) A list of the required analysis to be returned to the client. Each analysis name must be
supplied as a String.

The constraints are a set of (key, values) pairs used by the engine to filter out the calls to be graded.
The constraint list should be defined with the proper syntax in order to be correctly interpreted by
QueueMetrics.

There are two types of constraints: the percentage values and the absolute values. They should be
respectively specified through the suffixes "min" or "num".

16

The constraints are related to different categories:

• Individual agents: specified through the key AXG (like, for example: AGX_min or AGX_num)

• All calls: specified through the key AC (like, for example: AC_min or AC_num)

• Outcome code: specified through the key outcome followed by the outcome code and separated
by an underscore character (like, for example: outcome_KN_num or outcome_KN_min)

• Agent group: specified through the key agroup followed by the agent group name and separated
by an underscore character (like, for example: agroup_Default_min or agroup_Default_num)

The method QM.auth
This method is used to authenticate a username / password couple against the QueueMetrics server.
This can be used by third-party software that does not want to keep its own separate user database
but wants to use QueueMetrics' instead.

Call parameters:

1. (String) User name

2. (String) Password

Response

There is only one response block returned, named "auth", where the caller will retrieve all user
data, including the live key set for that user.

The method QM.authenticate
This method is used to obtain the profile of a user given its login and password. The profile is made
up of both login and - where applicable - agent information. It is possible to obtain the profile either
of the very user you are calling (by knowing its login and password) or of a "deferred" separate
user, if you have a user that would have the admin keys to view that information in the main GUI.

The deferred username works so that:

• If a deferred username is passed, and

• If the username/login pair are valid and the user has key USRADMIN and ROBOT

◦ Then the User.* output for the deferred user is returned

◦ If the user also holds the key USR_AGENT, the Agent.* output is returned as well

• The password-change function applies only to the user who logs in, not to the deferred user.

Call parameters

1. (String) User name

2. (String) Deferred user name, or blank

3. (String) Password

17

4. (String) New password, or blank if you do not want it changed.

Response

There is only one response block returned, named "output", where the caller will retrieve all user
data, including the live key set for that user.

The output block has the format:

Column 0 Column 1 Explanation

user.user_id 173 Internal user-id

user.login Agent/101

user.real_name John Doe

user.class_name AGENTS

user.keys USER AGENT XX YY All computed keys, space-
separated

user.n_logons 37

user.last_logon 2011-10-08 12:34:56

user.comment Optional

user.token 876543 Optional

user.email me@home.it Optional

user.enabled true "true" or "false"

agent.id 86 Internal agent-id

agent.description Agent J.D. (101) The name displayed in
reports

agent.aliases A set of aliases (if
present)

agent.location Main Blank if none

agent.group_name Experienced agents Blank if none

agent.current_terminal Sip/1234 Blank or "-" if none

agent.vnc_url http://1.2.3.4/vnc Optional

agent.supervised_by Demoadmin Blank if none, or login of
the supervisor

agent.xmpp_address xmpp:101@myserver XMPP chat address

agent.visibility_key Optional

agent.payroll_code Optional

password.changed OK OK if password was
changed, blank
otherwise

18

mailto:me@home.it
http://1.2.3.4/vnc

The following rules apply:

• Column zero contains the attribute

• Column one contains the value of the attribute (we supply a sample in the table above)

• Attribute names are not case sensitive

• If the user is also an agent, that is, there is an agent under the same name as the login, Agent
attributes are passed.

• Blank attributes may or may not be present in the list of attributes

The method QM.findAudio
This method is used to retrieve a recorded file name from the QueueMetrics server. In order to
retrieve the file name QM will invoke the currently configured Pluggable Modules to search within
the current recording set. This can be used by third-party software that needs to retrieve audio
recordings via HTTP.

Call parameters:

1. (String) User name (*)

2. (String) Password (*)

3. (String) Server

4. (String) Asterisk-ID (*)

5. (String) Call start (integer timestamp)

6. (String) Agent

7. (String) Queue

The username and password of a user with ROBOT access are mandatory.

If QM is on a clustered setup, the Server parameter must be passed to qualify the Asterisk call-id.

The Asterisk-Id is mandatory and is the one retrieved in the Call Details blocks.

Some PM may optionally require the Call start, Agent and Queue parameters; those are used for
fuzzy matching of calls, e.g on an external storage. Most PMs that do an exact match do not need
those parameters.

Response

There is only one response block returned, named "AudioFiles", where the caller will retrieve the
filename of each recorded file and a URL to actually download the file.

The response may include zero or more files; it is well possible that multiple recordings be present
for one call.

A sample PHP file that shows how to access the findAudio interface is supplied with QueueMetrics.

19

The method QM.insertRecordTag
This method is used to associated a new tag for a specific recording call file. This method could be
used to retrieve the list of tags related to a specific call.

Call parameters:

1. (String) User name (*)

2. (String) Password (*)

3. (String) Server: the server name in a cluster setup or empty for a not cluster setup

4. (String) AsteriskId: the asterisk specific call id

5. (String) FileName: the recording filename associated to the tag to be inserted

6. (String) Time: the time (in seconds) where the tag will be placed. If empty, the tag will be placed
at the beginning of the file

7. (String) Duration: the tag duration (in seconds). It could be empty.

8. (String) Message: the tag message. If empty, no tags will be added. This is useful for retrieve the
list of tags associated to a specific call.

9. (String) Color: an hex color value in RGB form to be associated a tag. (from 000000 to FFFFFF)

Response

There is only one response block returned, named "TagRecords", where the caller will retrieve the
list of tags associated to the specific server and AsteriskId parameters.

The method QM.tskAddNote
This method is used to insert a note task to a particular user. It’s possible to specify the validity start
and end date.

Call parameters:

1. (String) Access username: this one must be the user name of an active user holding the key
ROBOT.

2. (String) Access password: this must be the clear-text password of the given user name

3. (String) Task to user: this is the login to the user where the task should be addressed

4. (String) Start of validity: This must be written in exactly the format yyyy-mm-dd.hh.mm.ss (do
not forget the dot between the date and the hour). It could be empty.

5. (String) End of validity: This must be written in exactly the format yyyy-mm-dd.hh.mm.ss (do
not forget the dot between the date and the hour). It could be empty.

6. (String) Task Process Field: This is an optional identifier defined as ProcessFamily/ProcessId to
be associated to the task. Either ProcessFamily and/or ProcessId could be empty. The field could
be empty.

7. (String) Task message: This is the message associated to the task

20

8. (String) Task notes: This is the optional note associated to the task

Response There is only the result response block. No other custom blocks will be returned as a
result.

The method QM.tskAddTraining
This method is used to insert a training task to a particular user. It’s possible to specify the validity
start and end date, a title and an optional URL or ID that will be shown in the task detail page.

Call parameters:

1. (String) Access username: this one must be the user name of an active user holding the key
ROBOT.

2. (String) Access password: this must be the clear-text password of the given user name

3. (String) Task to user: this is the login to the user where the task should be addressed

4. (String) Start of validity: This must be written in exactly the format yyyy-mm-dd.hh.mm.ss (do
not forget the dot between the date and the hour). It could be empty.

5. (String) End of validity: This must be written in exactly the format yyyy-mm-dd.hh.mm.ss (do
not forget the dot between the date and the hour). It could be empty.

6. (String) Task Process Field: This is an optional identifier defined as ProcessFamily/ProcessId to
be associated to the task. Either ProcessFamily and/or ProcessId could be empty. The field could
be empty.

7. (String) Task message: This is the message associated to the task

8. (String) Task notes: This is the optional note associated to the task

9. (String) Task reason: This is an optional reason associated to the task.

10. (String) Task Training Title: This is an optional task training title.

11. (String) Task URL: This is an optional URL (in the http://www.mydomain.com/path format) to be
associated with the training task. It could be empty.

12. (String) Task ID: This is an optional ID associated to the task. If an URL if defined by the previous
parameter, this field will be ignored. It could be empty.

13. (String) Training CBT Code: This is an optional code referring to a QueueMetrics known CBT
item. If not empty, this field overrides the fields Task URL dna Task ID.

Response There is only the result response block. No other custom blocks will be returned as a
result.

The method QM.tskAddMeeting
This method is used to insert a meeting task to a particular user. It’s possible to specify the validity
start and end date, a title, a date and an optional duration that will be shown in the task detail page.

Call parameters:

21

http://www.mydomain.com/path

1. (String) Access username: this one must be the user name of an active user holding the key
ROBOT.

2. (String) Access password: this one must be the clear-text password of the given user name

3. (String) Task to user: this is the login to the user where the task should be addressed

4. (String) Start of validity: This must be written in exactly the format yyyy-mm-dd.hh.mm.ss (do
not forget the dot between the date and the hour). It could be empty.

5. (String) End of validity: This must be written in exactly the format yyyy-mm-dd.hh.mm.ss (do
not forget the dot between the date and the hour). It could be empty.

6. (String) Task Process Field: This is an optional identifier defined as ProcessFamily/ProcessId to
be associated to the task. Either ProcessFamily and/or ProcessId could be empty. The field could
be empty.

7. (String) Task title: This is the title associated to the task

8. (String) Task message: This is the message associated to the task

9. (String) Task date: This is the meeting date. This must be written in exactly the format yyyy-mm-
dd.hh.mm.ss (do not forget the dot between the date and the hour).

10. (String) Task duration: This is the optional meeting duration. If no duration is specified (or
specified as 0) the meeting will have an undefined duration.

11. (String) Task notes: This is the optional note associated to the task

12. (String) Tasl reason: This is the optional reason associated to the task

Response There is only the result response block. No other custom blocks will be returned as a
result.

The method QM.setActivationKey
This method is used to remotely change the configuration key of the QueueMetrics instance or to
query the current configuration key.

As this operation is potentially critical, the user sending this request must hold the keys ROBOT and
KEYUPDATE. We ship such a user named keyupdater in the default QM configuration but it has to be
manually enabled. Make sure you change the password as well.

As the system must be restarted after setting the new key so that it is picked up (this is done
automatically), the QM server may be unavailable for a few seconds during the restart phase and
current user sessions may be forcibly terminated. It is therefore not advisable to run this command
on a busy system with many users logged in.

Call parameters:

1. (String) Access username: this one must be the user name of an active user holding the keys
ROBOT and KEYUPDATE.

2. (String) Access password: this must be the clear-text password of the given user name

3. (String) New key: this is the key that must be set. If blank, the current parameters are reported.

22

Response

The custom block "KeyResults" is filled with the following parameters:

• KEY_status : NOKEY if no new key is given, otherwise OK or ERROR depending on the success of
the operation

• KEY_plexId : The server identifier

• KEY_message : A message explaining what went wrong

• KEY_current_appl : The name of the application

• KEY_current_user : The name of the user that the application is licensed to

• KEY_current_exp : The expiration date for the current key

Please note that when a new key is installed, the current user and expiration date are those of the
system on which the key is being installed; you should get the new ones as soon as the system
restarts (will usually take between 5 and 20 seconds).

The method QM.broadcastMessage
This method is used to insert broadcast messages that will be shown in the realtime broadcast
message page.

Call parameters:

1. (String) Access username: this one must be the user name of an active user holding the key
ROBOT.

2. (String) Access password: this must be the clear-text password of the given user name

3. (String) Message text: the text message to be broadcasted

4. (String) Queue Name: the optional queue name (it could be empty)

5. (String) Location Name: the optional location name (it could be empty)

6. (String) Supervisor Login: an optional supervisor login (it could be empty). The message will be
broadcasted to people reporting to the supervisor login.

7. (String) Agent Login: an optional agent login (it could be empty). The message will be addressed
to the specified agent.

8. (String) forEveryone: this could be "true" or "1" for messages to be broadcasted to everyone;
"false" or "0" otherwise.

Response There is only the result response block. No other custom blocks will be returned as a
result.

The method QM.getQueuesForAgent
Given an agent (like Agent/101) let the caller know on which queue(s) he’s supposed to work, as per
the configuration on the QM interface. For each queue, we get also back a "level", that is a penalty
level, like 0, 1 or 2.

23

It will also return the composite queues the agent is known on and the level he’s scheduled on
them.

Call parameters

1. (String) User name

2. (String) Password

3. (String) Agent code (must exactly match the one present in QM)

Response

If the agent code is unknown, an exception is raised.

There is only one response block returned, named "output", where the caller will retrieve all user
data, including the live key set for that user.

The output block has the format:

Column 0 Column 1 Column 2 Column 3

Agent/101 Q1 Queue 1 0

Agent/101 Q2 My Queue 2 2

Agent/101 Q3 Q4 Monitor 3 & 4 1

Explanation as follows:

• Column zero contains the agent code.

• Column one contains the queue or composite queue it is known for. These are a set of the
queues as they are known in Asterisk. They are separated by either a space or a vertical pipe (|)
symbol

• Column two contains the name that such queue(s) appear in the QM interface

• Column 3 contains the agent level, as per:

◦ 0: Main (no penalty)

◦ 1: Wrap

◦ 2: Spill

The method QM.getPauseCodesForAgent
Given an agent (like Agent/101), the caller gets back a set of pause codes and their description as it
would be visible to this user. As QM allows protecting pause codes with security keys (so that e.g.
you can have some pauses visible by som1e users only) QM computes the set of allowed pause from
the point of view of the agent.

Call parameters

1. (String) User name

24

2. (String) Password

3. (String) Agent code (must exactly match the one present in QM)

Response

If the agent code is unknown, an exception is raised.

There is only one response block returned, named "output", where the caller will retrieve all user
data, including the live key set for that user.

The output block has the format:

Column 0 Column 1 Column 2 Column 3

Agent/101 03 Lunch break PNB

Agent/101 17 E-mail PB

Agent/101 26 Coffee break NPNB

Explanation as follows:

• Column zero contains the agent code.

• Column 1 contains the pause code, as should be reported in Asterisk

• Column 2 is the description

• Column 3 is the pause type:

◦ PB - pause is payable and billable

◦ PNB - pause is payable but not billable

◦ NPB - pause is not payable but billable (unlikely!)

◦ NPNB - pause is neither payable nor billable

25

Understanding results
The result of the analysis is made up of a Struct, i.e. an associative array similar to Java’s HashMap
or Perl’s Hash, that maps block names to blocks.

Each block is a rectangular data container made up of an Array of Arrays of Strings. The outer
Array contains the rows while the inner ones will hold column values.

In the response, you get all the requested blocks as of parameter #9 of the call, plus a block named
response. The block response will contain:

• The status of the call: this should always be OK if no error was encountered. If this is not OK, the
other blocks may be missing or meaningless.

• The version of QueueMetrics running in the server

• The time elapsed to run the report.

All other blocks will follow the convention that the inner Array #0 (the first row) will contain table
headers, while actual data will be present from row 1 onwards. The table headers are the same you
can see in the on-screen representation.

The following Python code will run a simple dump of all the results in a readable form:

for t in res.keys():
 print "===== Block " + t + ": ========"
 for r in range(len(res[t])):
 for c in range(len(res[t][r])):
 print res[t][r][c] ,
 print "\t" ,
 print

The output will look like the following one:

===== Block result: ========
Status OK
Description
Time elapsed (ms) 3008
QM Version 1.3.1

===== Block KoDO.DiscCauses: ========
Cause N. Calls ...
Caller abandon 46 83.6%
Agent dump 1 1.8%
Timeout (voicemail) 8 14.5%

As you can see, the block KoDO.DiscCauses has one full line of header on its first row.

26

Using an external auth source for
QueueMetrics
QueueMetrics can accept an external authentication source. By using a simple XML-RPC interface, it
is possible to write third party scripts that are able to authenticate against a chosen authentication
system (e.g. Kerberos, LDAP, a Microsoft domain server, etc).

Log on procedure
When an user logs in to QueueMetrics, QM checks to see if there is an XML-RPC auth source defined
. QueueMetrics will execute a query to that third-party server passing along the user-id and the
password given for authentication, plus a given service-id that will be defined in the configuration
file.

The server will respond passing along a fixed set of data:

• An auth response (see below)

• A set of login information for that user (e.g. real name, email)

• The current class and user keys for that user

If the class passed along is empty, only the user keys will be computed. If the class is not empty, it
will be searched by name on the QueueMetrics storage and it will be loaded. Trying to load a non-
existent class will result in auth failure.

The auth server may return four different responses:

• Access allowed

• Access allowed with supplied user data

• Access is forbidden

• Access is fully delegated to QM

The following table explains the relationship between those states:

Auth OK Auth KO

User data from
RPC

AUTHORITATI
VE

FORBIDDEN

User data from
QM

SUCCESSFUL DELEGATED

If auth was SUCCESSFUL, the local QM database is checked for that user name. If such a user is
present, the user details, class and key information are loaded from QM. If such a user is not
present, the details are taken from the ones supplied via XML-RPC.

If auth was AUTHORITATIVE, the details are taken from the ones supplied via XML-RPC. Then they
are copied to the local user database (with a random password) so that although the user cannot

27

login manually, it is possible to decode the user name for all logged operations (e.g. Updating a
queue). If a user with the same name is present, credentials are forcibly updated with the
authoritative credentials.

If auth was FORBIDDEN, no other check is done and the user is rejected access.

If auth was DELEGATED, the standard QM logon procedure is done.

The whole procedure is totally transparent to the user, so they do not need to know which is the
authority that grants or denies access.

XML-RPC call parameters

Method: QMAuth.auth

Table 1. Input parameters

Pos Name Type Comment

0 System ID String As set in QM; if not set: blank

1 Username String

2 Password String

Table 2. Output block

Pos Name Type Comment

0 Status code String One of: * A (authoritative) * S (success) * F
(forbidden) * D (delegate) If other, behaves
as D.

1 Real name String

2 Email String

3 Class name String Must match an existing class

4 User keys String

The following values are implied in QM:

• Enabled = yes

• Masterkey = no

The actual user data is only read by QM in case "A"; otherwise it’s ignored, whatever is passed.

Tip: As a reference implementation, see the server that ships with QueueMetrics in the mysql-
utils/xml-rpc/xmlrpc_auth_server.php file. It also contains an example of querying a LDAP server in
PHP.

28

Configuration properties

A set of two new configuration properties control external auth sources in in QM:

Property Description

default.authRpcSe
rverUrl

If set, XML-RPC auth is used. Points to the URL of the auth server.

default.authSyste
mId

The system-ID for this QM license. Can be currently any user-chosen name for
the system.

29

Dynamic blocks in QueueMetrics
It is possible to have dynamic blocks generated externally that are included in QueueMetrics
reports. These blocks can be then viewed or printed as any other native block.

QueueMetrics offers you three different APIs for providing external data blocks, so you can choose
the method that works best for you:

• Plain HTML

• XML-RPC blocks

• JSON blocks

In any case, QueueMetrics will call the external server and provide it with the parameters of the
current report. These parameters are set as follows:

• queues: The queue(s) that the report is running on

• dtFrom: Begin of report period

• dtTo: End of report period

• agents: The included set of agents

• agent: The agent bbeing filered on

• locationId: The ID of the current report location

• agentGroupId: The ID of the agent group

• outcome: The outcome being searched

• callId: The CallId to be searched

• callerId: The Caller ID of the call

• waitDur: The expected wait duration (as an interval, see below)

• callDur: The expected call duration (as an interval, see below)

• disconnection: The disconnection cause

• enterPos: The expected position when the call was queued (as an interval, see below)

• attempts: The number of attempts (as an interval, see below)

• dnis: The DNIS

• ivr: The IVR sequence

• server: The server id (for clusters)

• supervisionOnly: If the current report is filtered on the agents that the current user supervises

• supervisorId: The ID of the supervisor

• tzOffset: The timezone offset

• joinMultiStint: If multi-stint calls are to be joined or not

• nonContig_dow: A string with the days of week being considered. 1: Monday to 7: Sunday

30

• nonContig_range1: The first time-filtering range (as an interval, see below)

• nonContig_range2: The second time-filtering range (as an interval, see below)

• queueSet: The expanded set of queues included (as a pipe-separated sequence)

• agentSet: The expanded set of agents included

Parameters are passed only if they are present in your search query.

If the parameter is an interval, it will be passed as two separate items, one called MIN and the other
MAX. For example, the enterPos parameter is passed as enterPosMin and enterPosMax.

String parameters starting with a ^ are to be interpreted as regular expression on the field.


the parameters queueSet and agentSet will include the actual items to be reported
on. So you do not have to know which agent an user supervises, or which agents
belong to a specific agent group.

Plain-HTML data sources (method XS01)
By specifying a url parameter to the data block XS01, the server specified will be called as an HTTP
GET request.

The resulting page text should contain an HTML fragment that will be included in the resulting
QueueMetrics page.

This is the most flexible method, as you can actually generate and include any kind of content,
including images and JavaScript. The content shall be styled by the server generating it.

XML-RPC data blocks (method XS02)
The XS02 method will invoke an XML-RPC server specified as its url parameter. The server will be
queried for a method called "QMDataSource.get" that receives a single Hash as its sole parameter.
The hash contains report parameters as specified above.

The result shall be a List of exactly two element, containing:

• In position zero, a Table of all columns to be rendered.

• In position one, a Table containing data to be rendered (that might be empty, that is will contain
an empty list)

We define a Table as a List of Lists of Strings.

So e.g. a data structure like:

31

Table 0:

Column 1	Style 1
Column 2	Style 2
Column 3	Style 3

Table 1:
 --
 |Value 1 |Value 2 |Value 3 |
 |... |.... | ... |
 --

will be rendered in QueueMetrics as:

 +--------------------------------------+
 |Column 1 |Column 2 |Column 3 |
 |------------+------------+------------|
 |Value 1 |Value 2 |Value 3 |
 |... |.... | ... |
 +------------+------------+------------+

The style for each column is a string like "width=150 type=text align=left" - see below for
specification.

An example XML-RPC server written in PHP is available within the QueueMetrics samples under
the name extDataSource_xmlrpc.php.

JSON data blocks (method XS03)
By specifying a url parameter to the data block XS03, the server specified will be called as an HTTP
GET request.

The resulting page text should contain a JSON data structure that will be parsed in order to get
column and data information.

32

{
 "headers": [
 { "title": "Column 1", "style": "width=150 type=text" },
 { "title": "Column 2", "style": "width=50 type=num" },
 { "title": "Column 3", "style": "width=50 type=text" }
],
 "data": [
 ["a", "0", "c"],
 ["d", "1", "f"]
]
}

In the example above, we have three columns - the first is a text column, the second an integer one,
the third again some text. Please not that in any case the data table contains only text.


If the returned data structure should not match the definition above, an error will
be displayed.

An example JSON server written in PHP is available within the QueueMetrics samples under the
name extDataSource_json.php.

Styling return values for XML-RPC and JSON data
blocks
Styling information is passed as a string that allows the following parameters:

• width: The width in pixel for this column

• type: The type of the column.

◦ text: Plain text

◦ ltext: A localization key that will be substrituted for the current locale

◦ num: An integer number

◦ decnum: A decimal number, with the default decimal digits.

◦ perc: A percentage. For example, "0.2345" will be rendered as "23.4%"

◦ html: Some HTML text

◦ datetime: A date and time, according to the current locale

◦ dtshort: A shorter date and time, according to the current locale

◦ time: A time, according to the current locale

◦ hhmmss: An integer number of seconds expressed as hours:mins:secs. E.g. "68" will be
expressed as "1:08".

• align: The textual alignment of the cell

◦ left

33

◦ right

◦ center

Values to be rendered as dates and times must be passed in the format "2011-10-11.12:34:56".


Column headers can be localized as well. Just include them between hashes, e.g.
"clok_total_call_length".

34

Appendix I: Response block names
Each XML-RPC call will have its own admissible set of block names that can be asked for. Response
blocks come in families, also known as Data Objects. Each response block name is made up of the
Data Object name dot the method name, as in KoDO.DiscCauses. Remember that response block
names are case sensitive.

Response block names for QM.stats
A complete list of possible QueueMetrics blocks is now maintained in the QueueMetrics User
Manual, chapter 6 "Report Details". The User Manual can be obtained from the QueueMetrics
website.

For every possible block there is a name, a description, a "shortcut code" for ease of identification
and an XML-RPC code. That is the name of the block that has to be retrieved over XML-RPC.



For example, if we want to access the "Disconnection Causes" block, we will look it
up in the manual until we encounter "UN03 - Disconnection Causes".

We see that its XML-RPC code is "KoDO.DiscCauses", so that is the name of the
block we’ll be asking for. Block names are case-sensitive, so make sure you are
writing it as it is on the User Manual.

Response block names for QM.realtime

DataObject: RealtimeDO

Real-time information, as displayed in the main QM real-time page, using system defaults.

Method Description

RTRiassunto An overview table of the queues in use.

RTCallsBeingProc Calls being processed in real-time

RTAgentsLoggedIn Agents logged in and paused

Response block names for QM.qareport

DataObject: QualAssDO

Quality Assessment information, as displayed in the QA report page.

Method Description

TrkCalls Tracked calls per agent report

TrkCallsQ Tracked calls per queue report

35

Method Description

CallSupervs Supervisors tracking calls report

Res1 Section 1 (as defined in the form) calls by agent report

Res1Q Section 1 (as defined in the form) calls by queue report

Res2 Section 2 (as defined in the form) calls by agent report

Res2Q Section 2 (as defined in the form) calls by queue report

Res3 Section 3 (as defined in the form) calls by agent report

Res3Q Section 3 (as defined in the form) calls by queue report

Res4 Section 4 (as defined in the form) calls by agent report

Res4Q Section 4 (as defined in the form) calls by queue report

Res5 Section 5 (as defined in the form) calls by agent report

Res5Q Section 5 (as defined in the form) calls by queue report

Res6 Section 6 (as defined in the form) calls by agent report

Res6Q Section 6 (as defined in the form) calls by queue report

Res7 Section 7 (as defined in the form) calls by agent report

Res7Q Section 7 (as defined in the form) calls by queue report

Res8 Section 8 (as defined in the form) calls by agent report

Res8Q Section 8 (as defined in the form) calls by queue report

Res9 Section 9 (as defined in the form) calls by agent report

Res9Q Section 9 (as defined in the form) calls by queue report

Res10 Section 10 (as defined in the form) calls by agent report

Res10Q Section 10 (as defined in the form) calls by queue report

AgentDetail Tracked calls details for each defined agent

Response block names for QM.qaformreport and
QM.qaformgrading

DataObject: QualAssFormDO

Quality Assessment information related to QA Forms.

Method Description

FormStructure The data structure of specified form

SectionValues Raw QA values for each section in forms matching the query

Comments Comments associated to forms matching the query

36

Response block names for QM.qaformsummary

DataObject: QualAssDO

Quality Assessment information related to QA Forms.

Method Description

OverallAverageFo
rmReport

Aggregated information for the overall specified form (scoring and not
scoring questions included)

FormSummary Aggregated information for the specified form (only scoring questions)

ScoringItemsForm
Summary

Aggregated information for the specified form (only scoring questions, same
as FormSummary)

NonScoringItemsF
ormSummary

Aggregated information for the specified form (only non scoring questions)

Response block names for QM.qacallstograde

DataObject: QAGradingDO

Quality Assessment information related to calls to be graded

Method Description

qagExtendedProp
osals

Set of calls to be graded and related information

Response block names for QM.auth
The QM.auth call will return one single block named "auth".

This block contains the following information:

• UserName: the login name

• Status: OK if authentication was passed or ERR if it was not passed

• FullName: The user’s full name

• Email: The user’s email address

• Class: The name of the class the user belongs to

• Keys: The active key set of the user, that is, all keys given to the class plus or minus the keys that
have been granted or revoked to this specific user

• Masterkey: If set to 1, this user has a Masterkey, so this user will pass each key ckeck

• NLogons: The number of logons the user has made. Each successful QM.auth call counts as a
logon.

37

Response block names for QM.findAudio
The QM.findAudio call will return one single block named "AudioFiles".

This block contains the following information:

• Column 0: Filename. A file name of the audio file

• Column 1: URL. The download URL for this audio recording.

If no calls are found, the block has zero rows.

Response block names for QM.insertRecordTag
The QM.insertRecordTag call will return one single block named "TagRecords".

This block contains the following information:

• Column 0: TagID. A technical ID associated to each tag

• Column 1: CallID. The QueueMetrics Unique ID associated to the call (in the format
asteriskId@server)

• Column 2: Title. The recording filename the tag is referring

• Column 3: Color. A decimal representation of the tag color

• Column 4: Time. The tag start time (in seconds)

• Column 5: Duration. The tag duration (in seconds) or 0 if no duration was specified

• Column 6: Message. The tag message

• Column 7: Optilock. Optilock field in the database. Reserved.

• Column 8: UserID. The technical user ID for the user who added the tag

• Column 9: CreationDate. The add operation timestamp

If no tags are found, the block has zero rows.

38

Appendix II: A short list of XML-RPC
libraries
To access QueueMetrics, you only need a library with Client capabilities. Server capabilities are not
needed. The following list is by no means exhaustive of all available implementations:

Perl

The BlackPerl library is available at http://www.blackperl.com/RPC::XML/

Python

The xmlrpclib ships with any modern version of the language.

JavaScript

The JSON-XML-RPC library can be found at: http://code.google.com/p/json-xml-rpc/

JavaScript (2)

The Jsolait library also offers an XML-RPC module: http://jsolait.net/

Java

There are a lot of implementations available for Java, we recommend Redstone’s LGPL library -
http://xmlrpc.sourceforge.net/

C / C++

See http://xmlrpc-c.sourceforge.net/

C# / .Net

A connector is available at http://www.xml-rpc.net/

VisualBasic

A COM component that will work on most languages on the Windows platform:
http://sourceforge.net/projects/comxmlrpc

PHP

The package phpxmlrpc can be downloaded from http://phpxmlrpc.sourceforge.net/

Ruby

The module xmlrpc is included in the Ruby Standard Library

39

http://www.blackperl.com/RPC::XML/
http://code.google.com/p/json-xml-rpc/
http://jsolait.net/
http://xmlrpc.sourceforge.net/
http://xmlrpc-c.sourceforge.net/
http://www.xml-rpc.net/
http://sourceforge.net/projects/comxmlrpc
http://phpxmlrpc.sourceforge.net/

	Accessing QueueMetrics through its XML-RPC interface
	Table of Contents
	Accessing QueueMetrics through its XML-RPC interface
	Document contents
	Revision history

	What is XML RPC?
	Which functions does QueueMetrics export as XML-RPC?
	Example: accessing QueueMetrics from Python
	Example: Accessing QueueMetrics from Java
	Example: Accessing QueueMetrics from PHP
	Example: Accessing QueueMetrics from JavaScript

	Understanding call parameters
	The method QM.stats
	The method QM.realtime
	The method QM.qareport
	The method QM.qaformreport
	The method QM.qaformsummary
	The method QM.qaformgrading
	The method QM.qacallstograde
	The method QM.auth
	The method QM.authenticate
	The method QM.findAudio
	The method QM.insertRecordTag
	The method QM.tskAddNote
	The method QM.tskAddTraining
	The method QM.tskAddMeeting
	The method QM.setActivationKey
	The method QM.broadcastMessage
	The method QM.getQueuesForAgent
	The method QM.getPauseCodesForAgent

	Understanding results
	Using an external auth source for QueueMetrics
	Log on procedure
	XML-RPC call parameters

	Dynamic blocks in QueueMetrics
	Plain-HTML data sources (method XS01)
	XML-RPC data blocks (method XS02)
	JSON data blocks (method XS03)
	Styling return values for XML-RPC and JSON data blocks

	Appendix I: Response block names
	Response block names for QM.stats
	Response block names for QM.realtime
	Response block names for QM.qareport
	Response block names for QM.qaformreport and QM.qaformgrading
	Response block names for QM.qaformsummary
	Response block names for QM.qacallstograde
	Response block names for QM.auth
	Response block names for QM.findAudio
	Response block names for QM.insertRecordTag

	Appendix II: A short list of XML-RPC libraries

