
The QueueMetrics
Uniloader User Manual

2019/04/02

ii

The QueueMetrics Uniloader User Manual
Loway

2019/04/02

Revision History
Revision 19.04 - covers Uniloader
0.6.0

2019/04/02 L

Table of Contents
1. What is Uniloader? .. 1

What happens if…. ... 1
2. Installation ... 2

Automated installation (RPM) ... 2
Manual installation under Systemd (CentOS, Debian/Ubuntu) ... 2
Manual installation .. 4
Running in production ... 5
Example: Uploading data to a local QueueMetrics system .. 5
Example: Uploading data to a QueueMetrics Live system .. 6

3. Concepts .. 7
Back-ends .. 7

4. Usage .. 9
Uploading data ... 9
Feedback actions: proxying AMI ... 9
Splitting a single queue_log file into multiple back-ends .. 10

5. Scenarios .. 13
One Asterisk instance, one local QueueMetrics instance ... 13
One Asterisk instance, one hosted QueueMetrics Live instance .. 13
Multiple Asterisk instances, one hosted QueueMetrics-Live instance 13
Multiple Asterisk instances, one QueueMetrics instance ... 14
One Asterisk instance, multiple QueueMetrics-Live instances .. 14
Multiple Asterisk instances, multiple QueueMetrics instances .. 15

6. Event tracking ... 16
Installing event tracking through RPM .. 16
Tracking Music-on-Hold ... 17
Tracking Parking lots as queues ... 18
Automatically Tracking Outbound Calls .. 19
Automatically tracking outbound queues in QueueMetrics .. 19
Automatically tracking hotdesking events .. 20

7. FreeSwitch / FusionPBX support .. 22
General overview .. 22
Setting up ... 23

8. Diagnostics and tools .. 25
Diagnostics: AMI connection test ... 25
Diagnostics: Test upload link .. 26
Diagnostics: Test connection to Mysql/MariaDB database .. 27
Diagnostics: Test connection to Postgres database ... 27
Diagnostics: Test Freeswitch’s ESL port ... 28

9. PBX Information ... 29
FreePBX .. 29
FusionPBX ... 29
Uploading configuration to a QueueMetrics instance .. 30

10. Configuration files .. 31
QueueMetrics configuration.properties .. 31

11. Custom PBX settings .. 33
Yeastar myPBX .. 33

List of Tables
6.1. Services installed in RPM ... 17

Chapter 1. What is Uniloader?
Uniloader is a program that is installed on your Asterisk PBX. It uploads data to a local or remote
QueueMetrics instance and receives actions to be performed on the local PBX.

Uniloader is deployed as a single binary file that has to be installed on the PBX itself. It is designed as
a very lightweight application so it can work unobtrusively even on low-end hardware; and it is meant
to be very safe, so data will not be lost even in cases where the remote QueueMetrics server becomes
unavailable.

When it runs, it uploads data using either HTTP/S or the MySQL protocol (depending on the back-end
you specify). HTTP/S is meant to run with remote QueueMetrics instances, especially QueueMetrics
Live (see http://queuemetrics-live.com for more information) , while MySQL is meant for local systems;
either case works if QueueMetrics is hosted on the same machine.

When running over HTTP, if the QueueMetrics server has no direct connection to the PBX, Uniloader is
able to act as a proxy and will receive actions to be performed on the Asterisk server via AMI (Asterisk
Manager Interface). This way you can run QueueMetrics remotely and still take advantage of the ability
to log agents on and off, pause them, listen to calls via ChanSpy, etc.

Uniloader is also used to perform other administrative/complementary tasks that perform useful
functions on an Asterisk system connected to QueueMetrics; for example, it can generate music-on-hold
events on queues, and can help diagnosing issues.

What happens if….
• The queue_log file is rotated: Uniloader will detect the rotation and will pick up the new file

• The remote system becomes unavailable: Uniloader will keep on trying until the system is back on
line. When it is, it will detect how much data was uploaded and will reload the missing parts. If using
multiple remote systems one of them becomes unavailable, only data for that specific system will be
blocked, while other systems will keep on working in real-time.

• Asterisk becomes unavailable: any commands meant to be sent to Asterisk are queued and will be
performed when Asterisk comes back on-line

• The PBX reboots: you need to make sure Uniloader starts on boot. It has no device dependencies so it
can be started at any time.

http://queuemetrics-live.com

Chapter 2. Installation
If you run a CentOS-based PBX system, you can use the easier RPM install; if not refer to the manual
install below.

Automated installation (RPM)
You can just run the following commands on your PBX:

wget -P /etc/yum.repos.d http://yum.loway.ch/loway.repo
yum install uniloader

Uniloader will be installed under /usr/local/uniloader and will be added to the system path. A
basic configuration will be set in /etc/sysconfig/uniloader; Uniloader will be immediately
run as a daemon and it will start automatically on reboot.

You will be able to control Uniloader by entering:

service uniloader start
service uniloader stop
service uniloader restart

Uniloader also adds a separate "tracking" service for Asterisk events - see Event tracking
the section called “Installing event tracking through RPM” [16].

Manual installation under Systemd (CentOS,
Debian/Ubuntu)

The Uniloader can be downloaded from http://queuemetrics-live.com/uniloader.jsp

First log in as root, then download the package as TGZ, uncompress it under /opt and create a link so
the command can be called from anywhere.

cd /opt
wget http://downloads.loway.ch/qm/uniloader-0.4.1.tar.gz
tar zxvf uniloader-0.4.1.tar.gz

cd /usr/bin/
ln -s /opt/uniloader-0.4.1/bin/uniloader_amd64 uniloader

Now if we run uniloader from the shell, it will print its default message.

All files in the examples below are available within the Uniloader package, under init-
scripts/systemd, so you can just copy them to the right location.

Uniloader
Create a configuration file as /etc/uniloader and set its values (edit is as to suit your system):

QUEUELOG=/var/log/asterisk/queue_log

On-premise QueueMetrics instance
URI="mysql:tcp(127.0.0.1:3306)/queuemetrics?allowOldPasswords=1"

http://queuemetrics-live.com/uniloader.jsp

Unitracker 3

LOGIN=queuemetrics
PASS=javadude
TOKEN=P001

QueueMetrics-Live
#URI=https://my.queuemetrics-live.com/CHANGEME
#LOGIN=webqloader
#PASS=CHANGEME
#TOKEN=

Now create a unit file as /lib/systemd/system/uniloader.service:

[Unit]
Description=Loway Uniloader
After=syslog.target network.target

[Service]
Type=simple
EnvironmentFile=/etc/uniloader
Environment=UPASSWD=${PASS}
Nice=15
KillMode=process
PIDFile=/var/run/uniloader.pid
ExecStart=/usr/bin/uniloader --src "${QUEUELOG}" \
 upload --uri "${URI}" --login "${LOGIN}" --token "${TOKEN}" \
 --pid /var/run/uniloader.pid
RestartSec=1
Restart=on-failure

[Install]
WantedBy=multi-user.target

Unitracker
If you also need the tracking service, create a configuration file as /etc/unitracker and set its
values (edit is as to suit your system):

AMIHOST=127.0.0.1
AMIPORT=5038
AMIUSER=admin
AMISECRET=amp123

#Uncomment to enable event logging
#DEBUGFILE=/root/unitracker_events.log

#Ony MOH tracking is enabled by default
ENABLEMOH=1
ENABLEPARK=0
ENABLEOUTBOUND=0

OUTBOUNDTHRESHOLD=300

Now create a unit file as /lib/systemd/system/unitracker.service:

[Unit]
Description=Loway Unitracker (Uniloader)
After=syslog.target network.target

[Service]
Type=simple
EnvironmentFile=/etc/unitracker
Environment=AMISECRET=${AMISECRET}
Nice=15
KillMode=process
PIDFile=/var/run/unitracker.pid
ExecStart=/usr/bin/uniloader track --host "${AMIHOST}" --port "${AMIPORT}" --login "${AMIUSER}" \
 --debugfile "${DEBUGFILE}" \
 --moh "${ENABLEMOH}" \
 --parkedcalls "${ENABLEPARK}" \
 --outboundcalls "${ENABLEOUTBOUND}" --outboundthreshold "${OUTBOUNDTHRESHOLD}"
RestartSec=1
Restart=on-failure

[Install]

Starting and enabling the services 4

WantedBy=multi-user.target

Starting and enabling the services
Under Systemd, you need to notify the daemon that there are new init files, tell it that you want them run
on boot, and start them.

Run the following commands for Uniloader:

systemctl daemon reload
systemctl enable uniloader
systemctl start uniloader

To check that the loader is running:

systemctl status uniloader

And to restart the service after you make some changes to the configuration file:

systemctl restart uniloader

All logs will be sent to the system journal, and are visible as:

journalctl -u uniloader

The same procedure must be followed to enable unitracker.

Manual installation
The Uniloader can be downloaded from http://queuemetrics-live.com/uniloader.jsp

The package contains:

• Uniloader binaries for all supported architectures (i386, amd64, arm7, arm64),

• A sample extensions_queuemetrics file,

• A sample splitter file.

Just copy the file "uniloader_xxx" for your architecture (Intel 32 / 64 bit, ARM 7, ARM64) into your
computer and make it executable:

cp ./bin/uniloader_arm7 ./uniloader
chmod a+x ./uniloader

To test it, run:

./uniloader -?

It should output a result like:

NAME:
 uniloader - the data upload companion for QueueMetrics and QueueMetrics Live.

USAGE:
 uniloader [global options] command [command options] [arguments...]

VERSION:
 0.4.0 - build: 82-20170828.1439 - OS: linux/amd64 - RT: go1.5.3

COMMANDS:
 upload, u Uploads a source file to a QueueMetrics or QueueMetrics Live instance
 testupload Tests a data upload connection
 track, t Tracks Asterisk events and creates relevant queue_log entries.

http://queuemetrics-live.com/uniloader.jsp

Running in production 5

 amitest Tests an AMI connection
 help, h Shows a list of commands or help for one command

GLOBAL OPTIONS:
 --src, -s "/var/log/asterisk/queue_log" The source queue_log file to be uploaded
 --cacert An optional CA Cert file, in .pem format
 --verbose-back-end Enables verbose back-end logging. Default: false.
 --read-pipe The source file is a pipe
 --help, -h show help
 --version, -v print the version

If it does, it is working.

Running in production
Uniloader produces a verbose log on STDOUT that should be redirected to a file and periodically
rotated.

You should also make sure that Uniloader is started when the PBX boots and that in case it should crash
it is automatically restarted.

We advise running Uniloader using nice so that it has reduced access to scarce CPU resources in case
of high load / contention with the PBX - while the PBX voice quality quickly degrades on a resource-
starved system, Uniloader does not really care about small delays in data uploading.

We also advise adding Uniloader to the command path, so that its many debugging functions can be
accessed easily.

Example: Uploading data to a local
QueueMetrics system

This is the most common scenario when using a locally installed QueueMetrics system.

nohup nice \
./uniloader -s /var/log/asterisk/queue_log \
 upload --uri "mysql:tcp(1.2.3.4:3306)/queuemetrics?allowOldPasswords=1" \
 --login queuemetrics --pass javadude --token P001 \
 >> /var/log/uniloader.log &

Will upload the queue_log file located at /var/log/asterisk/queue_log to the remote
"queuemetrics" database on server 1.2.3.4 with login "queuemetrics" and password "javadude", using
the default partition "P001".

After you start it, check the file /var/log/uniloader.log to make sure there are no errors. The
most common error is that you did not create the correct grants for your MySQL user to upload data
remotely.

If everything seems to work, log in into QueueMetrics, select "Edit system parameters" and make sure
that the default partition is P001.

This is the default queue log file.
default.queue_log_file=sql:P001

At this point, log off; log on again and click on "Mysql storage information"; select partition P001 and
select "Autoconfigure queues". Now the default queue "00 All" will include all of your queues and you
can see your historical and real-time status.

See also One Asterisk instance, one local QueueMetrics instance.

Example: Uploading data to a QueueMetrics Live system 6

Example: Uploading data to a QueueMetrics
Live system

You received your QueueMetrics Live access information; and in the received email you find that your
instance is called "ABCD" and the password is "1234".

nohup nice \
./uniloader --src=/var/log/asterisk/queue_log \
 upload --uri https://my.queuemetrics-live.com/ABCD \
 --login webqloader --pass 1234 \
 >> /var/log/uniloader.log &

At this point Uniloader will start feeding the remote database. You can login at any time by visting the
address https://my.queuemetrics-live.com/ABCD and logging in as "demoadmin" and the password you
were given.

The first time you log in, click on "System diagnostic tools" and then "Live DB inspector" to see data
being uploaded. When your database is complete (this may take a few minutes, depending on how
much data is on your PBX), go back to the home page and click on "Mysql storage information"; select
partition P001 and select "Autoconfigure queues". Now the default queue "00 All" will include all of
your queues and you can see your historical and real-time status.

See also One Asterisk instance, one hosted QueueMetrics Live instance. If you run a Yeastar system, see
the chapter dedicated to Yeastar MyPBX the section called “Yeastar myPBX” [33].

https://my.queuemetrics-live.com/ABCD

Chapter 3. Concepts
Back-ends

Uniloader supports three different back-ends: HTTP/HTTPS, MYSQL and FILE.

Each back end is functionally similar and can be thought of as a black box; it can be selected simpy by
entering a proper URI for the server.

HTTP/HTTPS back-end
If your URI looks like:

http://myserver/queuemetrics

Then you are using HTTP. In this case, the value of the "token" parameter is either a server in a cluster,
or you can leave it blank to denote the default server, and user/password are for a valid QueueMetrics
HTTP user.

The HTTP back-end also supports HTTPS URLs and will, by default, retrieve actions to be performed
on the PBX.

Please note that some appliances do not support HTTPS, so running HTTP might be mandatory.

HTTPS CA certificate issues

On some systems (especially appliances) it is possible that when running HTTPS requests, they all fail
with an error like:

x509: failed to load system roots and no roots provided

In this case, you have to manually tell the Uniloader where to find the correct CA .pem files for your
system, by using the "--cacert" parameter.

E.g.

./uniloader --cacert=/etc/certs/default.pem upload

Will force Uniloader to use the supplied root certificates. In case they are totally missing, we suggest
copying a recent certificate file from a working Linux distribution and point to that.

MySQL back-end
If your URI looks like:

mysql:127.0.0.1/queuemetrics

the loader will connect to a MySQL database called "queuemetrics" on "127.0.0.1", using the supplied
login and password; the token in this case is the partition that we want to upload data to.

If your MySQL is running on a remote system, it might be advisable to use a MySQL URI of the format:

mysql:tcp(1.2.3.4:3306)/uniloader?allowOldPasswords=1

This will connect to a database called "uniloader" on 1.2.3.4 and will set the parameter
"allowOldPasswords" to 1, as it is sometimes needed to use old versions of MySQL.

File back-end 8

A complete reference of all allowed DSN (Data Source Name) formats and connection
parameters is available at https://github.com/go-sql-driver/mysql

File back-end
If your URI looks like:

file:/my/file/path

The loader will try and append to a local file. This module is meant for quick testing of splitting rules
and does not currently check the state of the local file before writing to it.

It can also be used as a quick way to "throw away" a log file, by using file:/dev/null on Unix systems.

This back-end is only meant for testing and experimentation; the file is rebuilt on every
run, so no guarantee about data integrity is implied.

https://github.com/go-sql-driver/mysql

Chapter 4. Usage

Uploading data
To upload data, you need the upload command in Uniloader:

NAME:
 upload - uploads a source file to a QueueMetrics instance

USAGE:
 command upload [command options] [arguments...]

OPTIONS:
 --uri, -u The connection URI. Valid URIs start with file:, mysql:, http:, https:
 --login, -l "webqloader" The login for your connection
 --pass, -p "qloader" The password for your connection
 --token, -t In MySQL mode, the partition. In HTTP/S mode, usually blank or server-id
 --splitter, -x A JSON file describing how to split the source into multiple QM instances
 --noActions Actions from QM will NOT be sent to the PBX via AMI. Requires HTTP/S.

So you usually launch it like:

./uniloader --src /var/log/asterisk/queue_log upload \
 --uri mysql:/queuemetrics --login qm --pass 1234 --token P001

You can avoid passing parameters which value matches the defaults, so if your token is blank, or your
user is "webqloader" (as it is the case with default QueueMetrics Live instances), you do not need to
pass them explicitly.

Uniloader reads the source file specified in "src" and automatically detects if the file is rotated/rewritten.

When data is being uploaded, Uniloader makes sure that data is not uploaded twice and retries on errors.
You can safely restart it at any time and it will automatically synchronize with the current state of the
selected back-end.

You should NEVER have multiple Uniloader / Qloader / instances point to the same
instance at the same time. If you do, you will get hard-to-debug data corruption.

Feedback actions: proxying AMI
It is possible for Uniloader to act as a kind of proxy for a remote QueueMetrics instance. This happens
by default if you use a HTTP back-end. If you do not want this feature, you need to start Uniloader with
the "--noActions" option.

For example:

./uniloader --src /var/log/asterisk/queue_log upload \
 --uri http://my.queuemetrics-live.com/test1234 --pass 1234

All access information to the Asterisk PBX is to be configured on the QueueMetrics instance; for
example, if the PBX server is accessible on the address 127.0.0.1 (so the same host Uniloader is running
on) and you log-in as "admin" password "amp123", you should edit the configuration properties and
make sure that it says:

callfile.dir=tcp:admin:amp123@127.0.0.1
default.webloaderpbx=true
platform.pbx=DIRECTAMI

Splitting a single queue_log file into multiple back-ends 10

If you use mode CLASSIC, make sure you include the default QueueMetrics dial-plan in
extensions.conf: #include extensions_queuemetrics.conf, and have Asterisk reload the
configuration.

The AMI feedback feature works transparently for both Asterisk AMI and FreeSwitch ESL (as long as
the platform is set correctly).

You can see actions being performed in QueueMetrics from "System diagnostic tools" and
then selecting "Remote commands".

Splitting a single queue_log file into multiple
back-ends

If you run a single Asterisk instance on which multiple clients are hosted, chances are that you configure
your Asterisk system with a common naming convention, so that all extensions for your client Foo
Company are named "foo-123", all queues are named "foo-q1" and so on.

If you do, it is actually possible to split the queue_log file that Asterisk generates into multiple virtual
queue_log files. To do this, Uniloader looks for references of the client name in queues and agents, and
can optionally rewrite them so that a reference for queue "foo-q1" is sent to a specific QueueMetrics
Live instance set up just for Foo Company; and it is rewritten as simply "q1".

To split a single queue_log file you need to create a split file that details what you want done, and then
you can launch:

./uniloader --src queue_log.txt upload --splitter splitter.json

Please note that you do not need to specify a "main" rule on the command line. If you do, a copy of the
source file will be also uploaded to the main driver, without applying any transformation.

These are sample contents for a splitter.json file:

[
 {
 "uri": "http://my.queuemetrics-live.com/foocompany",
 "login": "webqloader",
 "pass": "verysecure",
 "token": "",
 "matcher": ["foo-"],
 "match": "any",
 "removematch": true,
 "disabled": false,
 "noactions": false,
 "clientname": "foo"
 },
 {
 "uri": "mysql:127.0.0.1/queuemetrics",
 "login": "queuemetrics",
 "pass": "itsasecret",
 "token": "P001",
 "matcher": ["bar-"],
 "match": "any",
 "removematch": false
 }
]

The following items must be specified for each instance.

• uri: the URI to upload data to. You can mix and match different backends as you see fit

Splitting FAQs 11

• login, pass and token: the information required by your back-end

• matcher: an array of strings that will be searched in the agent and queue fields.

• match: at the moment, it must be "any" - meaning that if a string is found, it is considered a match

• removematch: if true, the matching string is removed from the queue and agent fields

• disabled: set to true to manually turn off a rule

• noactions: set to true to turn off AMI actions for this instance, as you would do for the main instance
by using the "--noActions" flag.

• clientname: the name of the instance, that will be injected in the AMI responses using the dialplan
variable UNILOADER_CLIENT before they are passed to Asterisk. It will also used to replace the
sequence !UNILOADER_CLIENT in your Asterisk channels.

If you avoid setting some item, it is assumed to be a blank string or the "false" boolean value. Defaults
you set with the command lines are ignored, so all relevant information must be specified in the JSON
file.

Split data is sent only to instances matching the specific split rule; so the main instance you
specify on the command line will be fed all data in any case. As you usually do not want
this, you can simply avoid entering any "--uri" parameter on the command line.

Splitting FAQs

What happens if one back-end is or becomes unavailable?

Each back end runs in parallel; but if one should lag behind or should not be available, data for it is
delayed until the system is fully operational; at that point it will catch up automatically.

You can also safely restart Uniloader even if not all data is currently uploaded to all instances; the only
thing you have to consider is that, in case your queue_log is rotated, then only data present in the current
queue_log file is uploaded.

This works correctly only for the MySQL and HTTP drivers; in case you specify a file
back end, it will be truncated and rebuilt on each invocation.

Can I use different back-ends?

Yes, of course. Mix and match them as you best see fit.

Can I use feedback actions?

Yes - provided that all back-ends are HTTP.

What happens to the default back-end?

The default back-end - the one that is specified on the command line - is sent the raw queue_log data. If
you don’t need this, you can use a file back-end and point it to /dev/null, or you can simply omit it.

Splitting FAQs 12

Do I have to have a splitting rule for all my virtual clients?

No. Only the rules you specify will be applied, so if you do not include a rule for a specific client, the
relevant logs will simply be ignored. This means that you may host on the same Asterisk instance clients
who use QueueMetrics and clients that don’t.

How do I modify the configuration on a live system?

You can simply create a new JSON file and restart the Uniloader. In a few seconds it will sync again and
start tailing the files. The file will be read in parallel by all the different back-ends, so it will not require
a proportional amount of disk IOPS.

Why do I need the clientname field?

If you have a scenario where multiple QM instances are fed by the main QueueMetrics instance, it will
be handy to have rewriting enabled, so that e.g. the queue called "foo-q1" appears at the QueueMetrics
level as simply "q1".

This works fine when uploading data to QueueMetrics, but when actions are performed by that
QueueMetrics instance, they will appear as happening on queue "q1" and not on the actual Asterisk
queue "foo-q1".

By injecting the variable UNILOADER_CLIENT is therefore possible to edit the actions dialplan and
rebuild the correct physical name to be used when performing actions at the Asterisk level.

Chapter 5. Scenarios
One Asterisk instance, one local QueueMetrics
instance

You want to use Uniloader for your local QueueMetrics instance.

In this case you should use the MySQL back-end. You would not usually use the AMI feedback as
QueueMetrics is able to connect directly to the PBX.

You may also use the HTTP back-end, but there are currently no advantages in doing so.

See also: Example: Uploading data to a local QueueMetrics system the section called “Example:
Uploading data to a local QueueMetrics system” [5].

One Asterisk instance, one hosted
QueueMetrics Live instance

You want to use Uniloader for a QueueMetrics-Live instance.

In this case you should use the HTTP or HTTPS backend, and turn on AMI feedback, as the
QueueMetrics Live instance has no way to connect directly to your PBX.

In order to make your life easier, QueueMetrics Live actions are pre-configured to send actions back
via HTTP; you just need to make sure that the AMI credentials specified in the property callfile.dir in
configuration.properties match the ones used on your PBX.

See also: Example: Uploading data to a QueueMetrics Live system the section called “Example:
Uploading data to a QueueMetrics Live system” [6].

Multiple Asterisk instances, one hosted
QueueMetrics-Live instance

You have multiple Asterisk boxes and want to consolidate all their activity into a single QueueMetrics-
Live instance.

QueueMetris-Live supports up to 5 Asterisk instances in a cluster for a total of 50 agents per instance.
Each Uniloader instance must upload data to a different partition. Each cluster member should be
defined in the QueueMetrics-Live instance.

For example, this is how you would configure three Asterisk instances on a QueueMetrics-Live system:

default.queue_log_file=cluster:*

cluster.servers=srva|srvb|srvc

cluster.srva.manager=tcp:dial:12345@127.0.0.1
cluster.srva.queuelog=sql:A

cluster.srvb.manager=tcp:dial:12345@127.0.0.1
cluster.srvb.queuelog=sql:B

Multiple Asterisk instances, one QueueMetrics instance 14

cluster.srvc.manager=tcp:dial:12345@127.0.0.1
cluster.srvc.queuelog=sql:C

In this case, you would run Uniloader with the token "srva" on server A, and it would upload data to
partition A:

./uniloader --src=/var/log/asterisk/queue_log
 upload --uri https://my.queuemetrics-live.com/MYINSTANCE
 --login webqloader --pass CHANGEME --token=srva

The same goes for servers "srvb" and "srvc" that would upload to B and C respectively.

As you can see, each cluster member in QueueMetrics defines its own AMI credentials; so you can
safely use the AMI feedback mode with no further configuration. Please note that it’s common for all
AMI instances to just point to "127.0.0.1" because Uniloader runs on the same box as Asterisk itself.

When configuring agents, make sure that you set the server for each agent, so when they
log in to queues they already point to the right server.

Multiple Asterisk instances, one QueueMetrics
instance

You have multiple Asterisk boxes and want to consolidate all their activity into a single QueueMetrics
instance.

In this case, you need a cluster-enabled QueueMetrics instance, and each Uniloader instance should
upload data to a different partition. Each cluster member should be defined in the QueueMetrics instance
(if you use the MySQL back-end, you set the token to the name of the partition; if you use HTTP you
should set it to the name of the cluster member).

The names for cluster members are the ones you use in the property cluster.servers of your
QueueMetrics configuration.properties file.

Each cluster member in QueueMetrics defines its own AMI credentials; so you can safely use the AMI
feedback mode with no further configuration.

One Asterisk instance, multiple QueueMetrics-
Live instances

You run multiple different clients on one Asterisk instance, and you want to send each of them to their
own QueueMetrics Live instance.

In this case, you need to set up splitting rules so that data for each client is uploaded to the right
QueueMetrics Live instance.

For example, your 'splitter.json' file could look like:

[
 {
 "uri": "http://my.queuemetrics-live.com/client3",
 "login": "webqloader",
 "pass": "CHANGEME",
 "token": "",

Multiple Asterisk instances, multiple QueueMetrics
instances

15

 "matcher": ["client3-"],
 "match": "any",
 "removematch": true,
 "disabled": false,
 "noactions": false,
 "clientname": "client3-"
 },
 other clients...
]

In order to make sure that Asterisk performs the correct actions at the AMI level, you must specify a
"clientname" for each client and use that string in the Asterisk dialplan (where it is returned under the
variable "UNILOADER_CLIENT") in order to build the actual queue / agent / channel name to be used
on Asterisk.

So you would edit the stanzas you want to use in 'extensions_queuemetrics.conf' to use the client name,
like e.g.:

; extension 37: agent removequeuemember with hotdesking (for asterisk v1.4+)
exten => 37,1,Answer
exten => 37,2,NoOp("QM: RemoveQueueMember (asterisk v1.4+) Agent/${AGENTCODE}
 at extension SIP/${QM_AGENT_LOGEXT} on queue ${QUEUENAME}
 made by '${QM_LOGIN}' for '${UNILOADER_CLIENT}'")
exten => 37,3,RemoveQueueMember(${UNILOADER_CLIENT}${QUEUENAME},SIP/${UNILOADER_CLIENT}${QM_AGENT_LOGEXT})
exten => 37,4,Hangup

So if this action is performed on "client3" removing extension "127" from queue "300", the actual action
performed would be:

RemoveQueueMember(client3-300,SIP/client3-127)

That would produce a queue_log record like:

1487239051|1487239051.123|client3-300|SIP/client3-127|REMOVEMEMBER

But the splitter would then upload it to QueueMetrics as if it was:

1487239051|1487239051.123|300|SIP/127|REMOVEMEMBER

Because it would match the string "client3-" in both the queue and agent fields. This way each
QueueMetrics-Live instance is blissfully unaware of the physical names for queues and agents that are
used at the Asterisk level.

Also, as for some actions (chanspy and originate) QueueMetrics need to originate calls directly within
your diaplan, you should edit the configuration.properties file so that channels where the client is
required appear as:

callfile.monitoring.channel=SIP/$EM-!UNILOADER_CLIENT
callfile.outmonitoring.channel=SIP/$EM-!UNILOADER_CLIENT
callfile.customdial.channel=SIP/$EM-!UNILOADER_CLIENT

Multiple Asterisk instances, multiple
QueueMetrics instances

If you have multiple Asterisk instances on which calls are processed, and calls for any client can be
processed on each cluster member, you need to set up rewriting rules and create a cluster member (and
related partition) on each destination QueueMetrics instance.

Make sure you use the "clientname" variable to have Asterisk perform the correct AMI calls.

Chapter 6. Event tracking
This feature is experimental.

Uniloader can be used to connect to an Asterisk server and generate queue events that Asterisk would
not normally produce. This works by opening a stream of events from the Asterisk system through AMI
and tracking call progress in real-time.

$ uniloader track -?

NAME:
 uniloader track - Tracks Asterisk events and creates relevant queue_log entries.

USAGE:
 uniloader track [command options] [arguments...]

OPTIONS:
 --host "127.0.0.1" Your Asterisk server
 --port "5038" The AMI port on Asterisk
 --login The AMI user as defined in manager.conf
 --secret The AMI secret [$AMISECRET]
 --debugfile A debug file to dump AMI data to
 --moh "1" When set to 1, tracks Music-on-Hold events on queues.
 --parkedcalls "0" When set to 1, tracks parked calls.
 --outboundcalls "0" When set to 1, tracks outbound calls.
 --hotdesking "0" When set to 1, rewrites hotdesking information.
 --outboundthreshold "300" The answer threshold (in ms) for calls to be tracked as outbound.
 --noeventblacklisting "0" When 1, events are not blacklisted. Useful for taking traces.
 --pid The PID file to write. If already present, won't start.

This is meant to be run as a separate Uniloader process, parallel to the one that does data loading, with a
separate PID, so that it can be started and stopped separately from the main process.

You should make sure that only one instance of the tracker is running for each Asterisk server, otherwise
you will find duplicate events logged.

Restarting the tracker while calls are in progress will in general lead to incorrect data being
logged, as some events may be lost. So event tracking should run unattended and be started
as soon as Asterisk becomes available.

You can enable or disable different trackers at once, for example if you run:

./uniloader track --moh=1 --parkedcalls=1

It means you want both parked calls and MOH events tracked.

Installing event tracking through RPM
When installing the RPM package of Uniloader, two distinct services will be installed. Both of them rely
on the same binary of Uniloader, but are otherwise completely separate.

As event tracking is still experimental, it is NOT started automatically.

Tracking Music-on-Hold 17

Table 6.1. Services installed in RPM

Service Description Configuration
file

Started on
install?

Starts on
reboot?

uniloader Uploads
queue_log

/etc/
sysconfig/
uniloader

Yes Yes

unitracker Tracks events /etc/
sysconfig/
unitracker

No No

In order to start tracking of events you need to:

• Configure which features you want enabled (see below)

• Make the service restart on reboots: chkconfig unitracker on

• Start the service: service unitracker start

• Check its logs in /var/log/asterisk/unitracker.log

The configuration file lets you set the credentials to use to connect to Asterisk and it lets you turn on
specific features. By defaut, only MOH tracking is turned on by default.

These are the defaults - feel free to edit them as needed.

LOGFILE=/var/log/asterisk/unitracker.log
LOCKFILE=/var/lock/subsys/unitracker
PIDFILE=/var/run/unitracker.pid

AMIHOST=127.0.0.1
AMIPORT=5038
AMIUSER=admin
AMISECRET=amp123

#Uncomment to enable event logging
#DEBUGFILE=/var/log/asterisk/unitracker_events.log

#Ony MOH tracking is enabled by default
ENABLEMOH=1
ENABLEPARK=0
ENABLEOUTBOUND=0

OUTBOUNDTHRESHOLD=300

Tracking Music-on-Hold
Uniloader can be used to detect and generate Music-on-Hold events for calls that are being handled on
Asterisk queues.

In order to use it, you can launch it as:

./uniloader track --login admin --secret amp123 --moh=1

Where admin and amp123 are the current AMI credentials for your local Asterisk system. At this point,
you should:

• Send a call to an Asterisk queue

• Have an agent handle the call

Tracking Parking lots as queues 18

• Have the agent start and stop music-on-hold

The event will appear in QueueMetrics on the real-time page.

When enabled, MOH events should appear correctly even when tracking calls in parking lots or for
automated outbound.

Tracking Parking lots as queues
Uniloader can be used to track parked calls "as if" they were calls handled on a queue.

Parked calls are in a sense very similar to calls in a queue, because:

• You can define one or more separate parking spaces in the PBX

• Calls are parked at some period in time, and are waiting since then.

• The caller might decide to hang up before the call is served

• The call might time-out and be re-routed after a maximum wait time.

• Instead of being distribuited by the ACD, calls are "picked up" by the agent who is willing to serve
them. Agents are not "logged on" to a parking space in the same way as they are members of a queue.

• An agent may want to tranfer a call back to the same (or a different) parking lot for further handling

So by converting events from parked calls to logs that "look like" logs from a queue, it may be possible
to:

• See those calls on the Real-time page of QueueMetrics

• Run a wallboard on them

• Run reports on them

The main differences from actual queues are that:

• Agents must be able to see the park access code to fetch a call back from the parking lot. This is
handled by prepending the caller’s number with the park code. By using the wallboard or real-time
pages in QM you can then see who is parked.

• The queue name comes from the name of the parking lot prepended with a string that means it’s a
parking lot; for example, calls on lot "default" will be tracked as belonging to queue "pk-default".
Queue security features of QM can be used as usual.

• The feeding of a parking lot is usually by some agent transferring the call from an inbound queue. It
is important that such tranfer produces a call closure record on the queue, so that we can track the call
correctly and the first call ends before the parking lot starts. This works in FreePBX if the physical
interface that is connected to a queue is a SIP extension.

• As the agent is not logged on to the parking lot when they pick a call, and QueueMetrics works best
when agents are logged in to handle calls, we write a log-in record when the call is picked and we
produce a log-off record when the call completes.

• If a call is transferred from a parking lot to a different one, we write call and session closure records
before opening new ones.

Automatically Tracking Outbound Calls 19

• In Asterisk, calls transferred (on parking lots, or elsewhere) will usually have a different Unique-id
from their previous one. At the moment we make no provision to "reuse" the same Unique-id across
multiple trasfers.

In order to use it, you can launch it as:

./uniloader track --login admin --secret amp123 --parkedcalls=1

Where admin and amp123 are the current AMI credentials for your local Asterisk system. At this point,
you should:

• Create a queue in QueueMetrics with the name of your parking lot (e.g. "pk-default" for the default
lot)

• Transfer a call to the parking lot

• Have an agent pick up the call

The call should appear on the real-time page of QueueMetrics with ts pick-up code as if it was a call on
a queue.

Automatically Tracking Outbound Calls
Uniloader is able to track all calls on the system "as if" they were calls made on a queue, so that they
become visible to QueueMetrics.

In order to use it, you can launch it as:

./uniloader track --login admin --secret amp123 --outboundcalls=1 --outboundthreshold=300

In order to "trim down" the number of calls tracked, a call is only tracked if there is a slight delay
between its set-up and someone answering it. This way calls to internal PBX "service" numbers are not
tracked. You can adjust the threshold as needed though the outboundtheshold parameter.

As all calls must belong to a "campaign" in order to be tracked, Uniloader tries to determine the
"campaign" based on the account code of the extension currently calling. This way, by setting up
different account codes for different groups of people, you can control reporting and visibility of calls in
QueueMetrics. If an account code is set, the call appears on campaign q-ACCOUNTCODE; if no account
code is set, it appears on q-outbound.

If a tracked call enters a queue on your PBX; then its logs are closed an the rest of the call is tracked as a
normal inbound call.

Uniloader will also join the agent to the supposed queue and log her off by the end of the call, so that
reports and realtime monitoring in QueueMetrics appear correct.

Automatically tracking outbound queues in
QueueMetrics

When you run automated tracking as described above, if you use the QueueMetrics agent page for your
agents to dial out there is no need to include the outbound dial-plan.

You will have to create some specific physical queues in Asterisk to be used as "placeholders" for
outbound campaigns; and then you must make QueueMetrics aware of them and set them as "outbound"
queues.

Automatically tracking hotdesking events 20

From the Icon agent page, you will then be able to dial out by selecting the Dialout panel, choosing one
of the outbound queues you are logged on to and entering a number to be dialed.

In order to turn this feature on, you will have to enable:

• DirectAMI

• Outbound

• Tracker outbound

The following configuration can be a good starting point for a FreePBX system:

default.hotdesking=86400

platform.pbx=DIRECTAMI
platform.directami.agent=Agent/${num}
platform.directami.extension=SIP/${num}
platform.directami.transfer=${num}@from-internal
platform.directami.outbound.enabled=true
platform.directami.outbound.usetracker=true
platform.directami.outbound.trackerdialout=${num}@from-internal
platform.directami.localext=SIP/${num}
platform.directami.verbose=false

Please refer to the QueueMetrics User Manual for a complete description of how
DirectAMI works and which options you can use.

Automatically tracking hotdesking events
If you use an external tool to login your agents to Asterisk, and these agents have a name set, you may
want to enable tracking of hotdesking.

Debugging missed events 21

If hotdesking tracking is enabled, when an agent "joe" is logged on at SIP/71045 and produces an entry
like:

1552380101|MANAGER|callcenter|SIP/71045|ADDMEMBER|

The following entries are added to "reverse" the log-in and create a new one with proper hotdesking:

1552380101|MANAGER|callcenter|SIP/71045|REMOVEMEMBER|
1552380101|MANAGER|callcenter|joe|HOTDESKING|SIP/71045|
1552380101|MANAGER|callcenter|joe|ADDMEMBER|

Debugging missed events
If you find that some calls are missing events or have multiple events and you are able to find a
consistent pattern, you should run:

./uniloader track --debugfile debugdata.txt --noeventblacklisting 1

When running in debug mode, a large file is quickly generated; so it is appropriate to run it only for
short periods and when the system is otherwise idle.

When you are done, you should send Loway:

• The file that was just created

• Your queue_log file that was produced (or at least its relevant lines)

• An indication of which call is displaying wrong events

Chapter 7. FreeSwitch / FusionPBX
support

This feature is experimental.

Uniloader can work with FreeSwitch to act as an adaptor between its mod_callcenter features and
QueueMetrics. In particular, when using FusionPBX, events are divided by domain as to be able to feed
them to multiple QueueMetrics Live systems, one for each tenant who subscribed the service.

General overview
Uniloader is able to build a synthesized queue_log file out of a stream of events flowing from a
FreeSwitch system. This queue_log file can then be uploaded by a regular Uniloader process to a single
QueueMetrics instance, or can be split by tenant and pushed to multiple, separate QueueMetrics Live
instances.

Agent state is controlled by QueueMetrics by sending ESL commands to implement agent actions (eg.
log-on or log-off).

In order to enable this feature, you need to run two copies of Uniloader in parallel, as different services:

• one runs uniloader fsw: it connects to FreeSwitch over ESL, reads events from mod_callcenter
and generates a queue_log file

• another one runs uniloader upload: it reads the generated queue_log file and uploads it to one
or more QueueMetrics systems, splitting data as appropriate between different tenants

The system was designed to be run as two different services because log generation is based on events
streamed in real-time, so the idea is that the service is run at all times when FreeSwitch is active. Upload
also happens in real-time, but it can be restarted with no data loss if you need to change its configuration
- e.g. adding or removing a tenant.

Agent and queue translation
With FusionPBX, uniloader fsw can be given access to the FusionPBX’s Postgres database, in
order to decode queue and agent names (that appear as UUIDs) into their own tenant and extension.

For example, a queue with id 75082016-6394-4738-b896-b9121c060612 that belongs
to domain (tenant) abc.example.com where it is reachable under extension 200 will be logged as

Setting up 23

abc.example.com-200. An agent working from extension 300 under the same tenant will appear as
Agent/abc.example.com-300.

When uploading data, you can then use the splitter feature to send only data for domain
abc.example.com to a QueueMetrics Live instance named (for example)my.queuemetrics-live.com/
customer-abc, where the data mentioned above appears as queue code 200 and agent code Agent/300.

Setting up
You can install Uniloader normally; make sure you enable both services uniloader and
uniloader-fsw.

You can also run it manually to test it.

$./uniloader fsw -?

NAME:
 uniloader fsw - Parses FreeSwitch mod_callcenter events

USAGE:
 uniloader fsw [command options] [arguments...]

DESCRIPTION:
 This command listens on FreeSwitch's Event Socket.

It reacts to mod_callcenter events and attempts to coerce them
to queue_log format, to make them compatible
with QueueMetrics.
It only generates a queue_log file; it should then be
uploaded by a separate instance of 'uniloader upload'.

OPTIONS:
 --host "127.0.0.1" Your FreeSwitch server
 --port "8021" The ESL port on FreeSwitch
 --auth "ClueCon" The ESL auth secret [$AUTH]
 --queuelog The queue_log file to write
 --events A debug file to dump mod_callcenter events to
 --ps-uri "localhost/fusionpbx" A FusionPbx Postgres database to connect to
 --ps-login "fusionpbx" A FusionPbx database user
 --ps-pwd A FusionPbx database password [$FUSIONPWD]
 --shorten-domain "0" If 1, the domain will be shortened

When setting up:

• The queuelog option should create a queuelog file. It can be anywhere - you must make sure that it is
the same location that will be read by the uniloader service

• The file events is optional, but we suggest creating it so anomalies can be tracked

• If you use FusionPBX, credentials to the database can be entered in ps-uri, ps-login and ps-pwd. If
you don’t use it, set ps-uri to a single dash.

• The shorten-domain option will try shortening the domain name to the first element in it, e.g.
abc.example.com will be shortened to abc.

The database connection and the ESL connection can be checked using uniloader
test postgres and uniloader test fsw-esl.

Setting up mult-tenant systems with QueueMetrics Live
When using QueueMetrics Live with multiple instances on a multi-tenat system, you need to run the
uniloader service as:

Enabling user actions 24

./uniloader -s qlog.txt u -x splitter_rules.json

Where splitter_rules.json is a file that contains multiple tenants, defined as:

[
 {
 "clientname": "Acme Company Ltd",
 "uri": "https://my.queuemetrics-live.com/acmeco",
 "login": "webqloader",
 "pass": "itsasecret",
 "token": "",
 "matcher": ["acmeco-"],
 "match": "any",
 "removematch": true,
 "disabled": false,
 "noactions": false
 }
]

Note that:

• uri, login and pass are the ones that you are given for your QueueMetrics Live instance

• matcher contains the domain (tenant) and a trailing slash.

• clientname is not needed in this scenario, but we suggest setting it for readability

You can safely restart the service when you make changes to the rules, as data is queued on the
queue_log file.

You do not need to have all tenants configured; only the ones that match will be fed, and other data will
be ignored. If you create a new tenant, and there is existing data for it on the log file, it will be uploaded
on the first run.

A complete explanation of the splitter logic is available at Splitter the section called “Splitting a single
queue_log file into multiple back-ends” [10].

Enabling user actions
If you want, your QueueMetrics system can send login/logoff actions back to your FreeSwitch server.
An explanation of how this works at AMI Feedback the section called “Feedback actions: proxying
AMI” [9].

In QueueMetrics you need to set:

callfile.dir=fsw:ClueCon@127.0.0.1
default.webloaderpbx=true
platform.pbx=FREESWITCH

You do not need to include any dial-plan, as actions work directly.

In QueueMetrics, you also need to enter the "External Reference ID" identifier in the Agent (and
possibly Queue) page, as this code will be used to generate ESL login/logoff commands. The external
reference for queues and agents is easily found by running uniloader pbxinfo fusionpbx, as
explained in PbxInfo for FusionPBX the section called “FusionPBX” [29].

Chapter 8. Diagnostics and tools
Uniloader is meant to help automate a number of little tasks that pertain to administering and running a
QueueMetrics system.

Diagnostics: AMI connection test
Uniloader lets you test an AMI port from the command line. It will also check that the queuemetrics
context is present on the system, and will make sure that the AMI user has the required "originate"
privilege.

$./uniloader test ami -?

NAME:
 uniloader test ami - Tests an AMI connection

USAGE:
 uniloader test ami [command options] [arguments...]

DESCRIPTION:
 This command test an AMI connection.

It checks that the `queuemetrics` context is present and its
functions are present. It checks originates to `10@queuemetrics`
and prints available queues.

OPTIONS:
 --host "127.0.0.1" Your Asterisk server
 --port "5038" The AMI port on Asterisk
 --login The AMI user as defined in manager.conf
 --secret The AMI secret [$AMISECRET]
 --testChannel "Local/10@queuemetrics" The channel to use when testing originates.
 --testExtCtxt "10@queuemetrics" The ext@ctxt to use when testing originates.

In order to use it, you can call it like:

$ uniloader test ami --login admin --secret amp111

It will print out a comprehensive report, like:

Testing AMI connection to 10.10.5.27:5038 - Username 'admin' secret '******'
AMI Connected: Asterisk Call Manager/1.3

 N. Meaning ext@queuemetrics Present?
-_--
 1 Dummy extension 10 Ok
 2 Chanspy – inbound calls 11 Ok
 3 Sets a call status 12 Ok
 4 Chanspy – outbound calls 14 Ok
 5 Add call feature 16 Ok
 6 Remove call feature 17 Ok
 7 Agent pause 22 Ok
 8 Agent unpause 23 Ok
 9 AddMember 25 Ok
 10 RemoveMember 26 Ok
 11 Custom dial 28 Ok
12 Send SMS to SIP device 29 MISSING
 13 Soft hangup of call in queue 30 Ok
 14 Redirect call in queue 31 Ok
 15 Agent pause with hotdesking 32 Ok
 16 Agent unpause with hotdesking 33 Ok
 17 Addmember with hotdesking 35 Ok
 18 Removemeber with hotdesking 37 Ok

Known Queues Completed Abandoned
-_---
 - 300 10 5
 - 301 0 0
 - default 0 0
 - 400 0 0

Originating custom channels 26

Originate on 10@queuemetrics worked.

This shows:

• The version of AMI in use

• Whether all default queuemetrics extensions are present, and which ones are missing

• The queues configured in Asterisk, and their current usage statistics

• Whether the user has "originate" privileges

If connection is possible, it returns with a status code of zero; if not possible, or wrong credentials are
used, it returns with an error code so that you can script it.

Originating custom channels
It is possible to use have Uniloader originate arbitrary channels on the PBX by telling it the channel and
the extension and context to connect.

$ uniloader amitest --login admin --secret 123 --testChannel SIP/701 --testExtCtxt 706@from-internal

In the example above, first channel SIP/701 is brought up, and then it is connected to extension 706 in
context from-internal.

Diagnostics: Test upload link
If you want to make sure that your upload credentials to a server (either HTTP/S or SQL) are working,
you can test them by using:

$./uniloader test upload -?

NAME:
 uniloader test upload - Tests a data upload connection

USAGE:
 uniloader test upload [command options] [arguments...]

OPTIONS:
 --uri, -u The connection URI. Valid URIs start with file:, mysql:, http:, https:
 --login, -l "webqloader" The login for your connection
 --pass, -p "qloader" The password for your connection [$UPASSWD]
 --token, -t In MySQL mode, the partition. In HTTP/S mode, usually blank or server-id
 --timeout "10" The time-out to wait for (in seconds) on errors.

If the command runs and succeeds, it will print out the current high water mark for the back-end and
return with a status of zero. If there is any error, or the format of the connection is invalid, it will return
with a status different than zero.

For example, this command tests a local database that contains data:

$ uniloader testupload --uri "mysql:tcp(127.0.0.1:3306)/queuemetrics?allowOldPasswords=1" \
 --login queuemetrics --pass javadude --token P001
Testing upload credentials.
2017/07/27 14:28:14 Error: no db object
2017/07/27 14:28:14 Assert: DB Connection works
2017/07/27 14:28:14 [,P001] Driver error: retrying in 200 ms

High Water Mark is 1472824811 [2016-09-02 16:00:11 +0200 CEST]
Connection OK

As back-ends keep on retrying for errors automatically, the tool waits for a missed answer
within timeout seconds before giving up and marking the connection as invalid.

Diagnostics: Test connection to Mysql/MariaDB database 27

Diagnostics: Test connection to Mysql/
MariaDB database

This tool will check that you have a working connection to your Mysql or MariaDB database, and that
the credentials you use are correct.

NAME:
 uniloader test mysql - Tests a MySQL/MariaDB connection

USAGE:
 uniloader test mysql [command options] [arguments...]

DESCRIPTION:
 This command tests connection credentials.

It just connects to the database and runs an empty query
to confirm everything is working as expected.

OPTIONS:
 --dburi "tcp(127.0.0.1:3306)/queuemetrics?allowOldPasswords=1" The database to connect to
 --login "root" A database user
 --pwd A database password

An example run:

uniloader test mysql --dburi 10.10.5.27/somedb --login user --pwd pass

Will print:

2019/04/02 09:04:13 Testing MySQL connection to 'user:pass@tcp(10.10.5.27:3306)/somedb?allowOldPasswords=1'

2019/04/02 09:04:13 -- Connection took 54.183µs
2019/04/02 09:04:13 -- Query took 21.387871ms
2019/04/02 09:04:13 Local time on database is: 2019-04-02 09:04:13

Diagnostics: Test connection to Postgres
database

This tool will check that you have a working connection to your Postgres database, and that the
credentials you use are correct.

$./uniloader test postgres -?

NAME:
 uniloader test postgres - Tests a Postgres connection

USAGE:
 uniloader test postgres [command options] [arguments...]

DESCRIPTION:
 This command tests a Postgres connection.

It just connects to the database and runs an empty query
to confirm everything is working as expected.

OPTIONS:
 --ps-uri "localhost/fusionpbx" A Postgres database to connect to
 --ps-login "fusionpbx" A database user
 --ps-pwd A database password [$FUSIONPWD]

Example run:

uniloader test postgres --ps-uri 10.10.5.182/fusionpbx --ps-login fusionpbx --ps-pwd ""

Will print:

Diagnostics: Test Freeswitch’s ESL port 28

2019/02/22 09:59:32 Testing Postgres connection to 'postgres://fusionpbx:@10.10.5.182/fusionpbx'

2019/02/22 09:59:32 -- Connection took 298.534µs
2019/02/22 09:59:32 -- Query took 21.780999ms
2019/02/22 09:59:32 Local time on database is: 2019-02-22T00:50:58.357799+01:00

Diagnostics: Test Freeswitch’s ESL port
This tool tries connecting to Freeswitch’s ESL port and tries displaying queues and agents defined.

$./uniloader test fsw-esl -?

NAME:
 uniloader test fsw-esl - Test Freeswitch's ESL port

USAGE:
 uniloader test fsw-esl [command options] [arguments...]

DESCRIPTION:
 This command tries to connect to FreeSwitch's Event Socket.

OPTIONS:
 --host "127.0.0.1" Your FreeSwitch server
 --port "8021" The ESL port on FreeSwitch
 --auth "ClueCon" The ESL auth secret [$AUTH]

For example:

uniloader test fsw-esl --host 127.0.0.1 --port 8021 --auth ClueCon

Will display a successful dialog:

2019/02/22 10:01:37 Testing Freeswitch connection to '127.0.0.1:8021' with auth token 'ClueCon'

2019/02/22 10:03:29 <ESL: Content-Type: auth/request
2019/02/22 10:03:29 <ESL:
2019/02/22 10:03:29 ======= Attempting log in
2019/02/22 10:03:29 >ESL auth ClueCon

2019/02/22 10:03:29 <ESL: Content-Type: command/reply
2019/02/22 10:03:29 <ESL: Reply-Text: +OK accepted
2019/02/22 10:03:29 <ESL:
2019/02/22 10:03:29 ======= Login OK
2019/02/22 10:03:29 ======= Showing queues in mod_callcenter
2019/02/22 10:03:29 >ESL api callcenter_config queue list

2019/02/22 10:03:29 <ESL: Content-Type: api/response
2019/02/22 10:03:29 <ESL: Content-Length: 543
2019/02/22 10:03:29 <ESL:
2019/02/22 10:03:29 <ESL: name|strategy|moh_sound|time_base_score|tier_rules_apply|tier_rule_wait_second|tier_rule_wait_multiply_level|tier_rule_no_agent_no_wait|discard_abandoned_after|abandoned_resume_allowed|max_wait_time|max_wait_time_with_no_agent|max_wait_time_with_no_agent_time_reached|record_template|calls_answered|calls_abandoned|ring_progressively_delay|skip_agents_with_external_calls|agent_no_answer_status
2019/02/22 10:03:29 <ESL: 75082016-6394-4738-b896-b9121c060612|longest-idle-agent|local_stream://default|system|false|30|true|true|900|false|0|90|5||1|10|0|true|On Break
2019/02/22 10:03:29 <ESL: +OK
2019/02/22 10:03:29 ======= Showing agents defined in mod_callcenter
2019/02/22 10:03:29 >ESL api callcenter_config agent list

2019/02/22 10:03:29 <ESL: Content-Type: api/response
2019/02/22 10:03:29 <ESL: Content-Length: 464
2019/02/22 10:03:29 <ESL:
2019/02/22 10:03:29 <ESL: name|system|uuid|type|contact|status|state|max_no_answer|wrap_up_time|reject_delay_time|busy_delay_time|no_answer_delay_time|last_bridge_start|last_bridge_end|last_offered_call|last_status_change|no_answer_count|calls_answered|talk_time|ready_time|external_calls_count
2019/02/22 10:03:29 <ESL: 739a4112-d755-4977-bf2b-d2b9037babd0|single_box||callback|{call_timeout=15}user/200@10.10.5.182|Available|Waiting|0|10|90|90|30|1550762836|1550762841|1550763105|1550762723|0|1|5|1550763195|0
2019/02/22 10:03:29 <ESL: +OK
2019/02/22 10:03:29 ======= Logging off
2019/02/22 10:03:29 >ESL exit

2019/02/22 10:03:29 <ESL: Content-Type: command/reply
2019/02/22 10:03:29 <ESL: Reply-Text: +OK bye
2019/02/22 10:03:29 <ESL:

Chapter 9. PBX Information
Uniloader is able to read and display PBX information.

FreePBX
If you connect to the MySQL database of a FreePBX instance with:

uniloader pbxinfo freepbx --dburi 10.10.5.27/asterisk --login myuser --pwd mypass

You get a screen print-out of the status of the system, with an added queue "00 All".

= Tenant # 1:

-- Queues found: 6
 # Code Name Ext.Ref.
 1 00all 00 All
 2 300 Support
 3 301 Sales
 4 307 Some queue
 5 400 Recall
 6 401 Queue timeout

-- Agents found: 15

 # Code Name Ext.Ref.
 1 Agent/200 200
 2 Agent/201 201
 3 Agent/202 Joe
 4 Agent/203 Mick
 5 Agent/204 Gru
 6 Agent/205 205
 7 Agent/210 210
 8 Agent/211 211
 9 Agent/220 220
 10 Agent/221 221
 11 Agent/240 240
 12 Agent/241 241
 13 Agent/242 242
 14 Agent/250 250
 15 Agent/251 251

This configuration can be uploaded to QueueMetrics in one go - see the section called “Uploading
configuration to a QueueMetrics instance” [30]

FusionPBX
It is possible to get a list of agents and queues configured in mod_callcenter on a FusionPBX instance,
by accessing the database directly.

By running:

uniloader pbxinfo fusionpbx --ps-uri 10.10.5.182/fusionpbx

You get a list of all agents and queues, divided by tenant:

= Tenant # 1: mycustomer1.mypbx

-- Queues found: 1
 # Code Name Ext.Ref.
 1 300 q300 75082016-6394-4738-b896-b9121c060612

-- Agents found: 1

 # Code Name Ext.Ref.
 1 Agent/200 200 739a4112-d755-4977-bf2b-d2b9037babd0

Uploading configuration to a QueueMetrics instance 30

The complete syntax is:

uniloader pbxinfo fusionpbx -?

NAME:
 uniloader pbxinfo fusionpbx - Gets information on a FusionPBX instance

USAGE:
 uniloader pbxinfo fusionpbx [command options] [arguments...]

DESCRIPTION:
 Downloads FusionPBX settings.

It connects to the Postgres database and downloads
agents and queues as currently defined.

OPTIONS:
 --ps-uri "localhost/fusionpbx" A Postgres database to connect to
 --ps-login "fusionpbx" A database user
 --ps-pwd A database password [$FUSIONPWD]
 --single-tenant If you specify a domain (tenant), only that tenat will be read.

The flag single-tenant is useful when you have a multi-tenant system that feeds different
QueueMetrics system, and you want the configuration of only one tenant to be sent to one specific
system for autoconfiguration (see below).

Uploading configuration to a QueueMetrics
instance

It is possible to upload the configuration just read to a QueueMetrics instance in one go.

If you enable the user `robot`in QueueMetrics (that always exists, but is disabled by default), you can
run:

uniloader pbxinfo --mode syncqm \
 --uri http://127.0.0.1:8080/queuemetrics --login robot --pass robot --with-password 123 \
 freepbx --dburi 10.10.5.27/asterisk --login --pwd pippo

Will print out:

2019/04/02 09:16:53 Connecting to QueueMetrics at http://127.0.0.1:8080/queuemetrics (user: robot pass: *****)
2019/04/02 09:16:53 Transaction Results: okay - Entries: 35 created / 0 deleted / 1 updated

And send the current configuration to QueueMetrics.

Useful flags are:

• --with-password: users are created with a default password you specify. If not, they will be
created with a random password, so in order to use them the QueueMetrics administrator will have to
change their password manually

• --all-queues: if set to 1, a queue called 00 All, of which all agents are known members, will
be created. This is the default. Set to 0 to disable.

Chapter 10. Configuration files
Uniloader is able to read and write configuration files.

QueueMetrics configuration.properties

Reading a property
You can esily check the status of a QueueMetrics property programmatically, by calling:

uniloader cfgfile get -p realtime.agentPausedOnLogin
false

You will usually save the property to a bash variable for further decisions.

Full invocation:

NAME:
 uniloader cfgfile get - Reads a property and prints it on STDOUT.

USAGE:
 uniloader cfgfile get [command options] [arguments...]

DESCRIPTION:
 Reads a configuration.properties file and
prints on STDOUT the value that was found.

Can be used in Bash like:
 AUDIO=$(uniloader cfgfile get -f configuration.properties -p audio.url)
as to capture the value in a variable.

OPTIONS:
 --properties-file, -f "configuration.properties" The properties file
 --property, -p The name of the property to read
 --default, -d The default value

Writing a property
You can set a property to a desired value:

uniloader cfgfile put -p realtime.agentPausedOnLogin -v true -c "Customization 1"

The optional comment will be prepended to the property, like:

Customization 1
realtime.agentPausedOnLogin=true

Full invocation:

NAME:
 uniloader cfgfile put - Sets a property in a properties file.

USAGE:
 uniloader cfgfile put [command options] [arguments...]

DESCRIPTION:
 This command will set the property you define in a Java
properties file or similar.

If the property is already present with the same value, it is not changed;
otherwise the previous value is commented out and the new one is appended
to the end of the file with an optional comment.

The file is always overwritten.

OPTIONS:

Writing a property 32

 --properties-file, -f "configuration.properties" The properties file
 --property, -p The name of the property to set.
 --value, -v The new value.
 --comment, -c An optional comment

Chapter 11. Custom PBX settings
Uniloader can run on several Asterisk-based PBXs - on custom hardware, or in specific distributions.
Here are reported some configuration hints for specific systems.

Yeastar myPBX

MyPBX related setup
For this system you need to download the Uniloader Installation script and run it, it will install
Uniloader automatically.

• Go into /persistent in case you have a Yeastar U PBX or /ysdisk/support/tmp if you have a Yeastar S
PBX

• Download the script with wget http://get.queuemetrics-live.com/yeastar

• Execute the script with sh yeastar

• Follow the instructions

• When finished restart the PBX

QueueMetrics Live related setup
Integrating MyPBX with QueueMetrics Live requires some modifications on the QueueMetrics Live
settings. This can be easily performed through a web page tool reachable from the QueueMetrics Live
home page by following the below steps:

• Log on QueueMetrics Live with administrative rights

• Click on the "Edit system parameters" under the "Administrative tools" subset

• Look at the configuration key callfile.monitoring.channel=Local/$EM@from-internal and change as
callfile.monitoring.channel=SIP/$EM

• Repeat the same for the configuration keys callfile.outmonitoring.channel and
callfile.customdial.channel

• Save, then log-off from QueueMetrics Live

http://get.queuemetrics-live.com/yeastar

