QUEUEMETRICS USER MANUAL

Loway

	Revision History
	Revision $Revision: 1.35 $ - covers QueueMetrics 14.10	$Date: 2014/10/15 10:27:19 $	L

Chapter 1. What is QueueMetrics?

QueueMetrics is a versatile call center monitoring system dedicated to call centres based on
the Asterisk PBX.
QueueMetrics lets you…
	
Run reports on call center
 activity, divided by queue and filtered by agent and time period, that
 show what happened (e.g. taken calls, lost calls, agents logging on and
 off…) during the specified period. Such reports can be run while Asterisk is
 running, so that you have no delay in seeing what’s going on.

	
See the details of call center
 activity, like each single call that was handled or lost, and listen to it
 through your web browser.

	
Have a single real-time panel
 showing call center activity; you’ll see calls being processed by queues
 and agent activity in the very moment it’s happening. You will be able to
 listen to your agents' calls as they are being made, and optionally see
 their screen through a VNC application.

	
Give your agents a web-based
 interface panel that lets them see their own calls while they’re being
 handled and optionally launch an external web-app (like a third party CRM
 module) as the calls come in; they also can use it to log-on to
 Asterisk, log off and pause/unpause
 themselves.

	
Give agents a Mozilla-based
 system-awareness application, to see in real-time how their performance
 compares to the queue’s

	
Allow external users, like your
 clients if you are an outsourcer or the QA dept if you run an in-house
 call center, monitor your call center in real-time and see a stripped-down
 version of the current statistics.

	
Allows tracking of call
 completion statuses and pause codes, so you can run statistics on the
 result of your CC activity and on the time used by your agents, keeping
 track of their ACD and non-ACD time.

	
Allows grading of ongoing and
 historical calls by a QA team, and will produce QA reports by agent on an
 user-selectable number of metrics.

To meet these
goals, QueueMetrics processes a file called queue_log, i.e. the log file where
Asterisk writes signalling events on call queues. QueueMetrics is preconfigured
with the standard Asterisk installation paths so it will work out-of-the-box
for most installations.
QueueMetrics
is meant to be highly customizable; you can alter much of its behaviour to
fine-tune it to your own needs (and display your company’s - or your client’s -
logo….).
QueueMetrics
is an intranet application as is designed to be used through a web browser.
There is no software to install on the client machines. You can access it from
anywhere, as long as you have the correct credentials.
QueueMetrics
is meant to be free for smaller installations, that is up to two agents,
covering most SOHO’s and passionate Asterisk
hackers. Larger installation can buy a licence based on the call centre size;
our clients testify that the extra insight and control on your operation that
QueueMetrics makes possible is well worth its price tag!

Chapter 2. Installing QueueMetrics

QueueMetrics
is written in Java, so it should run on any environment where a Java virtual machine
is available. This means that the same version of QueueMetrics runs fine on
both Linux and Windows, with no need for a specific version.
2.1. Prerequisites: Server

The following software is needed to run QueueMetrics 14:
	
Java SDK, version 1.6 or later

	
A modern JSP and servlet container, like Apache Tomcat 5 or later

	
MySQL version 5 or later

	
Asterisk PBX, version 0.7 or later (versions 1.2 to 12 are fully supported)

All said software should be already installed and working on your machine before
attempting to install QM.
QM was tested on various distributions of Linux, on Windows 2000/XP and many flavours
of Unix.
If you use a RPM-based distribution (e.g. Red-Hat Linux, CentOS, Trixbox, Elastix, FreePBX) automatic
installation using the yum package manager is available.

2.2. Prerequisites: Client

QueueMetrics is a web based application, so it does not require any software to be installed
on the client machine but a fairly modern web browser.
QM is also a multi-user application, meaning that many users can use share the system at
the same time; each user is identified by its credentials and not by its
physical location.
The following web browsers have been successfully tested with QM:
	
MS Internet Explorer 8+

	
Mozilla Firefox

	
Opera

	
Google Chrome

The application is tested extensively only with the latest generation of web browsers.
All versions of Mozilla seem to share a common problem when trying to access
multiple user sessions from the same browser instance. You should not therefore
use Mozilla to access QM multiple times from the same browser; results might be unpredictable.

2.3. Version numbering scheme

Since January 2012, QueueMetrics uses a numbering system that is based on when a major release is built.
The version is then year plus the month of the release. So 12.01.1 is the first in the family that was
released in January 2012.
See how easy that is? It is also nice because then you know exactly how old or new the version you are dealing with is.
Older versions of QueueMetrics had a "classical" numbering scheme, as per 1.2.3. There is no change on the
licensing keys or anything else from the old to the new numbering scheme.

2.4. Where to install

The most common case is to install QM on the same server running your Asterisk instance.
This will be fine in most cases, but in very heavily loaded servers running
huge analyses it might be possible that QM will end up competing for RAM, CPU
and disk I/O with the Asterisk system. In this case, QM should be installed on
a separate server and log files should be replicated (or MySQL storage used, Chapter 20, Monitoring clusters with QueueMetrics)
to minimize impact on the Asterisk server.
In most cases - like mid-sized call centres up to 20 agents on line - it will usually
be okay to have everything on the same production server.
It will be fine to have MySQL run on a separate server from the main QM installation.

2.5. Installing in practice

Installing QM is easy and only takes a few minutes. If you run a RPM -based Linux
distribution, see below for automatic installation.
	
Make sure your servlet container is working

	
Make sure your MySQL is working and you have the "create" grants for a new database.

	
Download the latest version of QueueMetrics from http://queuemetrics.com

	
Unpack QM in the webapp/ folder of your servlet container. The folder created will usually be named something like
queuemetrics-1.7.0 - rename it asneeded.

	
Download the MySQL connector
 and place it in WEB-INF/lib with the other Jar archives. It is important
 that you use the file named mysql-connector-java-3.0.10-stable-bin.jar,
 that can be downloaded from http://www.mysql.com/products/connector-j/index.html
 Other versions of the MySQL connector will likely work but might require
 some minor tweaking of parameter (The most common case is when a version of the Connector/J greater or equal than 3.1
 is in use. To solve this problem see the page http://queuemetrics.com/faq.jsp.
 The current versions of QueueMetrics will handle such parameter tweaking automatically)

	
Create a database called queuemetrics in your MySQL
 installation and fill it with data taken from the file WEB-INF/README/queuemetrics.sql.
 The process will probably be something like:

	
Enter your MySQL shell as root typing:

mysql mysql

	
Create the new database

CREATE DATABASE queuemetrics;
GRANT ALL PRIVILEGES ON queuemetrics.* TO 'queuemetrics'@'localhost'
IDENTIFIED BY 'javadude';

	
Exit the MySQL shell

	
Load the database sample with something like

mysql --user=queuemetrics
 --password=javadude queuemetrics < queuemetrics_sample.sql

	
Edit WEB-INF/web.xml, change
 the parameters of JDBC_URL to reflect your installation. The included
 version uses a database called queuemetrics
 that is on a the same server, using a user called "queuemetrics" which
 password is "javadude".

	
Restart your servlet container

	
Point your browser to http://127.0.0.1:8080/queuemetrics

	
Log in and change the default QM installation passwords.

If you encounter any problems with this setup, you should point your browser to http://127.0.0.1:8080/queuemetrics/dbtest
for a JDBC tester page.
2.5.1. Installing using yum

On Linux
distributions that are derived from Red Hat, it is possible to install QueueMetrics using an automated procedure using the yum utility.
Just type the following commands:
wget -P /etc/yum.repos.d http://yum.loway.ch/loway.repo
yum install queuemetrics
The installation will start automatically and all dependencies will be handled
automatically. When it finishes, there is a screen telling you to type a command to create the database;
follow the on screen instructions to create it.
Within this installation, the database installation is optional as the system will recognize that the database is missing and will begin the database installation wizard, as described in the next chapter (Automatic database creation).
When finished, point your browser to http://127.0.0.1:8080/queuemetrics
and log in using the default credentials.
The current QueueMetrics installation can always be found at /usr/local/queuemetrics/qm-current

2.5.2. Automatic database creation

When you first open Queuemetrics and no database is present, the system will check a few times for an available database. This usually takes about 10 seconds.
QueueMetrics will then display a missing database error for a few seconds and will then automatically jump to the database creation wizard.
[image: ./Pictures/QMdatabase_creation.png]

Once you select the "Create QueueMetrics Database now >>>" button, the system will take you to the next screen where you will need to enter the "MYSQL root user" and the "MYSQL root password" details and select "Submit". These are the only editable fields within the displayed form.
[image: ./Pictures/QMdatabase_creation_settings.png]

This page displays the database creation steps in real-time, showing the Status and time taken to complete each task.

2.5.3. Using the JDBC tester page

The main source of problems when installing QueueMetrics is to correctly set-up the JDBC
connection to the MySQL database. In order to ease the installation process,
there is a test page available at the URL http://127.0.0.1:8080/queumetrics/dbtest
The test page will look like the following figure:
[image: ./Pictures/image004.png]

If all tests show the OK status, then you are ready to start QueueMetrics. If any test
should fail, the web app will tell you the reason of the failure and possible
workarounds.
If all tests are Okay, it’s a good idea to click on the link that checks that you have
the latest version of the database and updates it in case it’s necessary.
In this case, for example, one of the tests fails:
[image: ./Pictures/image006.png]

It is very important that you restart the servlet container after tweaking with the JDBC
configuration; otherwise your changes may work in the DBTest page but might not
be seen by QueueMetrics.
If you run QueueMetrics on a publicly-accessible machine, you may want to disable the
DBtest utility - you can do so by setting a configuration property. This will
also inhibit showing technical data in the licence page.

2.6. Updating from a previous version of QueueMetrics

If you choose to update from a previous working version of QueueMetrics:
	
Make a backup of the files web.xml and configuration.properties that are found in WEB-INF/. To be
 extra-safe, make a backup of the whole working webapp and of the database
 being used.

	
Unpack the new version of QueueMetrics

	
Copy the old files web.xml and configuration.properties so your licence and preferences are preserved

	
Copy the additional Jar files not distributed with QueueMetrics, e.g. the MySQL connector

	
Restart the servlet container

	
Run the DB tester

	
From the DB tester, run the database update utility

	
Once the database update utility reports a success, you’re ready to log-in to QueueMetrics

2.6.1. Automatic update using yum

If you originally installed QueueMetrics using yum, you can upgrade your system using
yum as well.
	
Make a backup copy of the files web.xml and configuration.properties that are found in WEB-INF/. To be
 extra-safe, make a backup of the whole working webapp and of the database
 being used.

	
Type the following command:

yum update queuemetrics
and follow the update process. Yum will check if a newer version is available and will install it.
- Copy the old web.xml and configuration.properties over the default ones that were
 installed using yum.
- Restart QueueMetrics by
 entering:
 /etc/init.d/queuemetrics restart

	
Point your browser to http://127.0.0.1:8080/queumetrics/dbtest
 and check if the database is consistent. If there are changes that need to
 be made to the old database schema, the database update utility (see
 below) will handle them automatically.

See also Making settings permanent when upgrading through yum
Section 2.7.3, “Making settings permanent when upgrading through yum”.

2.6.2. The database update utility

QueueMetrics ships with an utility that makes it very easy to check and upgrade an existing database
to the latest version used by newer versions QueueMetrics. Before running the update utility, make sure you have a backup of the
QM database!
You can access it directly pointing your browser to http://127.0.0.1:8080/queuemetrics/dbtest/
[image: ./Pictures/dbtest_page.png]

Once you access the DB updater, it will check and update the database and then optimize it for maximum
access performance. This may take a while if you have a lot of queue_log data loaded into it.
From this very page, you can also check a number of system properties through the so-called DbTest Diagnostic Tools:
	
The current QueueMetrics configuration.properties settings

	
The Java environment used

	
The Java memory and CPU settings

	
Whether the AMI connection to the Asterisk is working

	
The current Asterisk configuration

	
The current MySQL storage data (with search ability)

For further details, see the complete description
Section 21.21, “Using the DbTest Diagnostic Tools” of the DBTEST module.
	[image: [Note]]	
	As this page lets you acces the inner configuration of QueueMetrics, it should be turned off on
publicly accessed systems. This can be obtained by setting a configuration parameter as detailed on
the DBTEST page itself.

2.7. Installing a licence key

QueueMetrics ships with a limited evaluation key that lets you use the system freely with up
to two agents. If you need to evaluate with a larger call center, you will be
sent a temporary key that will process as many agents as needed. The same
happens when you decide to buy the product.
The key is a single long hexadecimal sequence with minuses in the middle and looks like the following string:
012345678-0987564D-3C082EF8-012345678-0987564D-3C082EF8
The length of the key may vary according to the features needed.
Once Loway sends you the temporary or official key, you can install it either through
the graphical interface or manually through a shell.
2.7.1. Installing a new key

Log on to QueueMetrics as "demoadmin" and click on the License page, if you have the
correct grants you should
see a label called "Install new license key"; click on it.
[image: ./Pictures/install_key.png]
Copy the activation code you received by e-mail into the license box and press "Install". The system
will restart in a few seconds (you may see a blank page - if you do, just try and reload). Log off an on
again. On the License page you should see the new key.
If you see any errors, follow the manual installation procedure detailed below.

2.7.2. Manual installation of a license key

	
Locate the file WEB-INF/web.xml within the QM webapp

	
Edit the file with a text editor

	
Locate the section with the licence, looking like

<init-param>
 <param-name>LICENZA_ARCHITETTURA</param-name>
 <param-value>...........</param-value>
</init-param>
Insert your licence key within the param-value tag, all on one line, exactly as it was sent to you
- Save the modified file
- Restart your servlet container
- Login to QM as usual using your browser
- Click on the "Licence" label to see your current licence.

2.7.3. Making settings permanent when upgrading through yum

Instead of updating properties in the web.xml file, it is possible to edit the tpf.proprerties file
by uncommenting the properties you need to change - the one you will likely change are
LICENZA_ARCHITETTURA and JDBC_URL. The values defined in tpf.properties basically override the
servlet properties with the same name.
 LICENZA_ARCHITETTURA=1234-5678-........
 #START_TRANSACTION=qm_start
 #JDBC_DRIVER=com.mysql.jdbc.Driver
 JDBC_URL=jdbc:mysql://localhost/......
 #SMTP_HOST=my.host
 #SMTP_AUTH=true
 #SMTP_USER=xxxx
 #SMTP_PASSWORD=xxxxx
When installing using yum, the tpf.properties file is automaticaly copied from the current version
to the new one, without the need to do this manually. We anyway suggest that you make a backup of your
existing configuration and database before upgrading, just to be on the safe side.
If you use the tpf.properties file, you can safely ignore editing the web.xml file.

2.7.4. License expiration notification

QueueMetrics will notify users on the Home Page when the license is about to expire; this helps
preventing downtime in case a license actually expires without renewal.
	[image: [Tip]]	
	It is possible to turn off this additional notification by setting a configuration
 property.

2.8. Setting session timeout

The default session timeout value for QueueMetrics is 30 minutes. This means that if the
application is left idle for more than 30 minutes by a user, the resources
associated with the user session are reclaimed and the user session expires. If
the user tries to continue, he will have to log on again.
It is possible to change the inactivity period that will result in a session timeout
by changing the session-timeout parameter in web.xml, expressed in
number of minutes:
<session-config>
 <session-timeout>30</session-timeout>
</session-config>
If changing this parameter, it is important to keep in mind that real-world users will only
seldom use the "Log off" button and will usually rely on closing the browser
window when they terminate using QueueMetrics. As the amount of data stored in
memory by QueueMetrics can be quite large (runs of tens or hundreds of thousand
calls are quite common) they will be using up RAM until the session times out.

2.9. Understanding basic security mechanisms

Each user accessing QM should have his own user and password. The administrator can
easily setup multiple accounts from the administrative interface. All user
activity is tagged to the user performing it, so it’s a good idea to give an
account to each person accessing the system. Accounts can be created, blocked
and revoked in a matter of minutes.
Each feature that QM offers is enabled by a special key, as if there was a padlock protecting it from unauthorized
access. The administrator gives each user a key ring that specifies which locks
the user can open, and therefore what the user can do. A list of keys used in
QM is available in Appendix B, Security keys.
To ease the burden of administering multiple users, keys can be grouped into classes. Each class offers the
additional advantage of giving the key ring a label, so that it’s easier to see
whether an user is an Administrator, a User or an Agent by looking at the label
and not at the very keys s/he holds.
Individual keys can be granted or revoked individually to handle special cases, in
addition to the ones anyway present in the user’s class. For more information,
see Chapter 21, Editing QueueMetrics settings.
A list of default users provided with the standard QM installation and their default passwords
can be found in Appendix A, Default users.
Just to be on the safe side, QueueMetrics keeps an Audit Log of all activities that
may have security implications; see The Audit log
Section 21.22, “System audit log inspector” for more details.

2.10. Understanding QueueMetrics memory requirements

To understand QueueMetrics' memory needs, you must consider that the memory requirements
are roughly proportional to the width of the analysis and to the number of required events to track.
You may think of it as the number of calls plus the number of agent events, i.e.
agents logging on and off and setting pauses on and off.
Calls can be restricted by the queue filter, but all agent events in the required time window are tracked.
This gives you an idea of the memory usage.
Though the actual memory requirements depend considerably on the actual content of your
analysis and the exact brand and version of Java virtual machine that you are
running, you should expect to be possible to track circa 80,000 calls and
40,000 agent events with a standard 64 megabyte Sun Java VM and Tomcat running.
You can of course start your servlet container with more memory in order to allow more
room for larger analyses. The standard way in Tomcat is to pass additional Java
parameters is to store them in the environment variable JAVA_OPTS before
starting Tomcat.
Typing:
JAVA_OPTS="-Xms256M -Xmx512M -server"
export JAVA_OPTS
And then starting Tomcat will start up a Java virtual machine that has 256 megabytes of
available memory and can use up to 512 megabytes, and runs in server mode.
Consider that this memory is
shared between all QueueMetrics users and all Java web-apps, so the more the
better.
Consider also that Java will never return this memory to the system free memory pool,
even when it stops using it. The only way to have this memory returned to the
system memory pool is to stop the Java VM and restart it. Therefore, it’s a
good idea to perform a scheduled restart of the servlet container, to avoid
possible memory leaks and to reclaim now-unused memory to the main pool.
As a last note, the memory footprint of a Java VM may be quite larger than the memory you
give it as Java heap space, as it will need RAM space for the VM itself and all
its required libraries. Overheads of 50-100 megabytes are not unheard of,
depending on the Java Virtual Machine in use.
A more in-depth discussion of QueueMetrics memory usage and live monitoring can
be found on the "Advanced Configuration Manual", chapter "Tuning QueueMetrics memory settings".
A real-life example for a large call-center with about 400 agents logged on and
running on a dedicated server may be like:
-Xms4096M -Xmx4096M -server -XX:+UseParallelGC -XX:PermSize=512M -XX:MaxPermSize=512M
But the actual optimal configuration on a large system should be determined by running
the system for a while under the required workload and monitoring the actual resource
consumption.

2.11. Understanding QueueMetrics disk I/O requirements

Disk I/O required by QueueMetrics is directly proportional to the queue_log size as it is read
from scratch every time you ask for a full analysis. Even if you only care about what happened yesterday between 3
and 4 PM, your 50-megabyte queue_log
will be read entirely. As the queue_log usually don’t get too large even in the
largest installations, this is usually a feasible strategy.
The big advantage of using MySQL as a storage medium is that the queue_log rows are
indexed when importing, so only relevant rows are extracted and transferred to
QueueMetrics. This should speed things
up a bit for the largest installations. Also with MySQL you can put the database
on an entirely different server in order to avoid disk I/O problems with the local system running Asterisk -
see Chapter 19, Storing queue data on MySQL for complete details.
2.11.1. How much load can QueueMetrics handle?

In order to test if our product behaves correctly under load, we routinely do a stress test
of QM simulating 20 users who keep on running reports and real-time monitoring.
We consider the test passed and the product worth releasing if QueueMetrics can handle over
one million continuous transactions with no memory problems - they are usually
far more than any user will likely do, and with a very constrained VM size.
The stress test that QM 1.4 passed had the following parameters:
	
Sun Java 1.4.2_04 running in server mode with 256Mb fixed heap

	
SQL storage using connector version 3.10

	
20 concurrent reporting users

	
Simulated CC with nearly 1,500 calls per day

	
No errors on over 2,000,000 transactions run

QM will easily scale upwards giving it more Java heap space to accommodate larger
datasets. Call centres with over 400 agents online and 50,000 calls per day are
not an uncommon target for QueueMetrics.

Chapter 3. Logging on to QueueMetrics

To log on to QueueMetrics, you have to point your browser to the address of the server
where you installed QM. As servlet containers are often installed on ports
different than the standard HTTP one, it might be necessary to specify the port
address.
For example, if you install Tomcat 5 on the same server you’re accessing QM from,
you may end up pointing your browser to: http://localhost:8080/queuemetrics.
Ask your system administrator for the correct web address of your instance of
QueueMetrics.
If all goes well, you will see a page like the following one:
[image: ./Pictures/image010.png]

This and the following screenshots are taken using Opera 8 on Windows; other
environments may present minor discrepancies from what is shown here.
If your system administrator has already configured QM, you might see you firm’s logo on
the top left part of the screen and a different welcome message.
To enter the system as a user, enter the standard credentials demouser with password demo
and click on the "Log in" button, or use the credentials your administrator has
provided.
If you prefer to use a different language from the default English, you can choose one of the
other supported languages from the drop-down box. After choosing the language,
the main page will be reloaded.
[image: ./Pictures/Homepage_New_layout.png]

The user is presented with the Home Page, that is the starting point of QM. The name of the
user and the current class for the user are shown on the top-right corner of
the window.
To end the current session, you have to press the "Log off" icon or close the browser
window.
To print the current page in a printer-friendly format, you just press the "Print" icon.
To see more details on the current user and change its access password, click on the "Info"
icon.
To reset queue search parameter (time period, offset, multi-stint mode…) to the
defaults without logging off and on again, press the Reload icon.
As of QueueMetrics 12.10 it is possible to view the configuration.properties file from the Home page. This is achieved by adding the key EDIT_CFG to the admin user, which will enable a link on the Home page, within the Administrative Tools, that will allow access to the file.
3.1. License information

Pressing the "Licence information" label, a page like the one below is shown.
[image: ./Pictures/image014.png]

This page shows the current release of the software and the current license information.
If you are running a free demo version, you will see that the maximum number of licensed
agents is 2 and an additional text will remind you on how to register.
You can also see some information being shown on the Operating System and Java version
being used. Such information is very useful to in the case of errors and should
be sent to Loway in the case you think you have found a bug.
If QueueMetrics is to be run on a publicly-accessible box, it is possible to hide
all technical information from the user by setting a configuration property.

Chapter 4. Running a report

To successfully run a report, your system administrator must have configured the
correct queues in use on your system. You will find them in the drop-down menu
on top of the page. See Section 21.3, “Configuring queues” for details on how to do it.
4.1. Quick activity reports

The quickest way to obtain an analysis is by selecting the queue and the report you want to analyze
and then click on the appropriate time frame below the "Quick activity reports"
title on the home page.
The defined time frames are the following:
	
Today, Yesterday, The day before yesterday
 The day in question, starting from midnight to midnight

	
Last day, Last 7 days, Last 30 days, Last 90 days
 The exact time period, starting from the current hour backwards.

	[image: [Tip]]	
	QueueMetrics implements an extended dropdown that allows easy access to queues and reports. Extended options
could be reached clicking on the magnifier glass located on the right side of the dropdown.

The system will then show the "Answered calls" page, like here below.
[image: ./Pictures/image016.png]

On top of the page, you can see a multi-tab menu; by clicking on it you can select which
part of the report you are going to see. To go back to the home page, click on
the "Home" tab. You can also see all the analyses at once by clicking on the
"All" label (this is mostly useful when printing the results to paper).

4.2. Agent report

If the user has the appropriate grants, s/he can restrict the analysis to a single agent.
This way one can see exactly what one agent did.
To use this feature, select the agent you want to filter by and click on the desired time
period in the "Agent report" section of the Home Page.
If you are running an agent-restricted report, you should know that:
	
For inbound traffic, no calls are shown in the "Lost calls" page. This is because
 an inbound call that has been lost has never been connected to any agent,
 so there is no way to attribute them to one single agent.

	
All outbound calls placed by the agent (answered or not) are shown

	
Agent statistics are shown only for the given agent

	
As always, activity is restricted by queue - no activity but the one
 happening on selected queues is shown.

4.3. Custom reports

Custom reports are available by clicking on "Run custom report" from the Home Page.
A new menu will appear, asking for custom report parameters:
[image: ./Pictures/image018b-customrep.png]

The meaning is as follows:
	
Queue is the queue or composite queue you want to analyze;

	
Call filtering criteria can be specified by clicking on the title to open it (see below);

	
Start and end date let you select the period you want to analyze, with five-minute resolution;

	
File is the queue_log file you want to analyze. You may want to change it to run
 reports on a different Asterisk server or on an older archived version of your
 queue_log. If you run QM on the same machine as Asterisk, the file name
 should be already correct. Make sure the file is readable to your servlet
 container. If you use MySQL storage or clusters, the file will look
 something like "sql:P001" or "cluster:*"

	
Time zone offset is to be set if the Asterisk server that created the queue_log
 file was in a different time zone from the one you are using.

	
Join multi-stint calls lets you join together the pieces of the same call if it has been
 processed by more than one Asterisk queue (see Chapter 15, Multi-stint calls).

By clicking on the "Run custom report" button, you can run the analysis, which output is
the same as the "Quick activity report" and will be explained below.
4.3.1. Call search criteria

A number of criteria can be specified to better zoom in on a given set of calls.
	
Agent is a specific agent code

	
Location is a given location

	
Supervision lets you search only for agents that have the current user as their supervisor

	
Outcome lets you select a call outcome

	
Asterisk call-id search by substring on the Asterisk’s UniqueID of the call

	
Caller search by substring on the Caller-ID

	
Wait duration lets you specify the call waiting duration

	
Call duration lets you specify a minimum and maximum for the call duration

	
Disconnection cause lets you pick a disconnenction reason for the call

	
Enter position lets you enter a minimum and maximum enter position (note: this is not tracked for every call)

	
Number of attempts lets you select a given number of attempts

	
DNIS lets you select calls that have a specific DNIS (if tracked)

	
IVR choice lets you select calls that have a specific IVR choice (if tracked)

	
Server for clustered systems, lets you select only calls that were processed on a given server

	
Non-contiguous reports let you choose the day(s) of the week and the time periods that
 you want to include in the reports.

Note that:
	
Criteria involving a full-text search (e.g. Caller) can optionally support full Regular Expressions;
 if they start by "^" they will be processed as Regular Expressions. E.g. entering "^\d+$" means
 "find all fields which value is made up only of numeric characters, having at least one character".

	
Criteria involving a time-range require you to enter both time values as HH:MM:SS or HH:MM.
 Invalid values cause the time-range to be ignored.

	
Criteria involving an integer range can optionally be left blank; leaving the miminum value
 blank is the same as entering "0", while leaving the maximum value blank equals to "any number".

	
Invalid criteria are discared and are not used as rectriction. The list of applied criteria is shown
 on the "Common header" that is available on every page.

	
If multiple criteria are input at the same time, they are AND-ed together - that is only calls that
 suit all given criteria will be shown.

	
Running criteria with multi-stint calls may or may not lead to the results you are expecting.
 See Chapter 15, Multi-stint calls for more information on this issue.

Search criteria are ignored for real-time reports.
When a report is run with criteria set, all statistics are computed "as if" those were the only calls
available; so e.g. agent sessions may yeld different results from what you would get with no criteria.

4.3.2. Persistent user properties

Per-user persistence settings allow user search configuration to be stored and kept even after log off and can be changed and re-stored at any stage.
[image: ./Pictures/persistence_settings.png]

Custom Reports maintain the latest query parameters entered, even when a user logs off and logs back in, in order to facilitate the work-flow of a user requiring the same reports on a daily basis.
The Refresh button allows to clear the input query parameters at any stage.

4.3.3. Preferences

The value set in default.hourly_slot acts as a default for a drop down box that is available within the Preferences of the Custom Reports page.
User that edit this value basically override the default and can change it to a set of predefined durations:
1, 2, 3, 5, 10, 15, 20, 30, 60, 90, 120, 240 and 480 minutes.
Once this value is edited, it stays the same until the user logs off or changes it again.
This option adds persistence (per user) to the options set in Custom Reports. This makes the user-accessible customisation options of QM persistent.

4.4. Understanding results: Common header

On the top of each report, a box will be shown showing:
	
Which queue or queues were considered for the analysis

	
The time period the analysis refers to

	
Whether the report is about the whole of the queue or is filtered by some criteria

	
The total number of calls processed for this analysis, divided into answered and unanswered ones.

	
If running in multi-stint mode, the total number of calls that were joined together

There is also a box showing a number of analyses you can export in CSV format.
When running in report mode, QM distinguishes between calls or agent sessions that are
complete and calls or agent sessions that are "ongoing" at the moment the
report was taken.
Ongoing calls or sessions are usually marked in red and counted separately, as data for
them is not definitive and will appear differently if you run further reports.
You should also note that a call that has not been answered yet will be counted as
"Ongoing unanswered", though it may well be answered in the nearest future by
one of your agents.
In any case, if you need to see calls in progress or whether an agent is logged in,
you should rely on the Real-time panels and not on the reports.
TIP:
The number of decimals is usually set to 1 but can be changed to 2 via the property:
 default.decimalDigits=1

4.5. Exporting data from reports

It is possible to export data in Microsoft Excel, Comma-Separated Values (CSV) or XML
right from most QueueMetrics panels.
[image: ./Pictures/image020.png]

By clicking on the Excel, CSV or XML icons below each report, it is possible to save exactly
the same report as seen on screen and then edit it using your favourite number-crunching software.
You must be logged in to download the reports, as you see them on screen.
Users holding the key USR_REPORTS_EXPORT could export the whole analysis to a PDF or XLS files by mean of
the two buttons located on the report header, as shown below:
[image: ./Pictures/image307.png]

If you are
looking for an automatic way to export a full analysis to one file, you should probably
have a look at Chapter 18, Automating statistics download: the ROBOT profile.

4.6. Understanding results: Answered calls

The answered calls section deals with calls that were correctly handled by agents.
The top panel shows:
	
How many calls were handled;

	
The average call length (i.e. time the caller spends talking to an operator);

	
The maximum and minimum call lengths recorded for the given time period;

	
The total call length (for all calls on all operators);

	
The average call waiting time (i.e. the time a caller was waiting on a queue before being connected to
 an operator).

	
The minimum and maximum call waiting times on record

	
The total waiting time for all handled calls.

	
The average initial position of the call in the queue

	
The minimum and maximum initial queue positions that have been detected

	
The queue position coverage: as this information is not tracked for all calls, this ratio shows the average number of calls that had queue position record.

You can see that the information above is reported twice: on the left for all calls,
including incomplete ones, and on the right for complete calls only, i.e.
excluding calls that were started before or terminated after the given time frame.
[image: ./Pictures/image022.png]

4.6.1. Agents on queue

This report shows which agents have been available for the given queue, how many calls each
one handled and the percentage of all calls that each one handled.
If calls are connected directly to a phone terminal, QM tries its best to show the
corresponding terminal, usually in the format used by Asterisk, like "SIP/303"
to signify a SIP phone whose number is 303.
If you connect to H.323 telephones via the OH323 module, the recorded channel names
have no meaning and do not refer to a specific terminal; that’s why all OH323
calls are grouped together under the label "OH323/-".

4.6.2. Service level agreement

This report shows the distribution of call waiting times. It shows how many calls were
answered within a given time frame, usually 120 seconds in 10 second increments
(the time frame and increment can be modified by the administrator, if needed -
see Section 21.19, “Configuring system preferences”).
It is also possible to have two time frames in order to have a higher granularity for
shorter time periods - e.g. having SLA computed in intervals of 5 seconds up to 20 seconds,
and in intervals of 10 seconds up to 120 seconds.
You get a percentage of how many calls were answered within X seconds; the percentage
includes calls answered in a shorter time frame and therefore grows with time.
The "delta" value you see is the absolute increment, expressed in number of calls, between
each time frame.
This metric is computed only on answered calls, i.e. ignoring lost calls . If your SLA is defined in terms of taken and lost calls, see the
corresponding metrics "Inclusive SLA" on Section 4.7.4, “Inclusive Service Level Agreement”.

4.6.3. Disconnection causes

This report shows the reason why calls were terminated; this means that:
	
The agent hung up, or

	
The caller hung up, or

	
The call was transferred outside the queue and the agent was freed again, or

	
The call was ongoing at the time the report was run.

4.6.4. Transfers

This graph shows how many calls were transferred to each extension in the given time
frame. This lets you know who is handling exception calls.
	[image: [Note]]	
	when a call is transferred outside the queue system, its length is no more recorded
by the queue subsystem; therefore you only get to see the length of the call
while the agent was on line.

[image: ./Pictures/image024.png]

4.6.5. Answered calls by queue

If more than one queue is in use for the report, this graph shows the relative
magnitude of each queue.
Inbound queues are marked with the symbol
[image: ./Pictures/image025.png]
while outbound queues use the symbol
[image: ./Pictures/image026.png]
.

4.6.6. Answered calls by direction

If more than one queue is in use for the report, this graph shows the relative
magnitude of inbound versus outbound calls made.

4.6.7. Answered calls, by stints

This graph counts the distribution of multi-stint calls on selected queues. If multi-stint
mode is not enable, all calls will have only one stint.

4.6.8. Queue position

This graph shows the initial queue position that the calls had when they joined the queue.
For example, a queue position of 1 means that a call was first in line, of 5
means that a call had four other calls in line before being answered. As the
logging of queue positions is a bit inconsistent, some calls might be missing
it ("Untracked")

4.6.9. IVR selection

This graph shows the distribution of IVR selections available in the calls processed.
This must be tracked manually in Asterisk - See "Configuring Asterisk for QueueMetrics" below.

4.6.10. DNIS used

This graph shows the distribution of DNIS lines available in the calls processed.
This must be tracked manually in Asterisk - See "Configuring Asterisk for QueueMetrics" below.

4.6.11. Detail of answered calls

This page shows the detail of answered calls. See Chapter 5, Showing call details.

4.7. Understanding results: Unanswered calls

Unanswered calls are calls that were lost, i.e. the caller could not connect to an agent.
This usually means that either the caller hung up, fed up with waiting, or the
queue system decided to discharge the caller, maybe sending him to voicemail or
another queue.
	[image: [Note]]	
	if you run a report with an agent filter, or a supervisor filter, or
a location filter, the number of lost calls in the report is usually zero,
showing just outgoing calls, if any.
This is because the agent is specified only for taken calls and not lost ones,
so not deleting them all would show, e.g.,
the taken call data for one single agent and the lost calls for all of the
queue. You can override this behaviour through a configuration switch if you
feel this is not correct for you.

The Unanswered calls page looks like the following picture:
[image: ./Pictures/image028.png]

The report shows:
	
How many calls were lost;

	
The average waiting time before disconnection;

	
The average queue position at disconnection (i.e. how many calls the queue had to dispatch before
 connecting the caller to an operator).

	
The minimum and maximum wait times

	
The minimum and maximum queue position at disconnect.

	
The average, minimum and maximum initial queue position, and the coverage given for this
 computation

As with answered calls, this report is computed twice; the version on the left is for
all calls monitored, while the version on the right only holds data for calls
that were complete at the moment the analysis was run.
4.7.1. Disconnection causes

This report shows the relative magnitude of disconnection causes, that are:
	
The caller hung up, or

	
The queue timed out and
 discharged the caller (if this feature is enabled by the queue configuration - see Chapter 24, Configuring Asterisk for QueueMetrics), or

	
The caller exited the queue by pressing a key (if this feature is enabled by the queue configuration).

4.7.2. Unanswered calls, by queue

If more than one queue is in use for the report, this graph shows the relative
magnitude of each queue.

4.7.3. Unanswered calls - distribution by length

This report is functionally equivalent to "Service level agreement" in the Answered calls
section (see Section 4.6.2, “Service level agreement”), but is computed on lost calls. It
shows how many calls were hung up within a given time frame, usually 120
seconds in 10 second increments (the time frame and increment can be modified
by the administrator, if needed - see Section 21.19, “Configuring system preferences”).
You get a percentage of how many calls were lost within X seconds; the percentage
includes calls lost in a shorter time frame and therefore grows with time.
The "delta" value you see is the absolute increment, expressed in number of calls, between
each time frame.

4.7.4. Inclusive Service Level Agreement

The inclusive SLA corresponds to the Service Level
Agreement metrics shown on Section 4.6.2, “Service level agreement”, with the difference that it is
computed taking into consideration both answered and unanswered calls.

4.7.5. Unanswered calls by key press

If there are any calls that are were set unanswered because the caller pressed a key to
exit the queue, this graph shows which keys were pressed and how many calls
were terminated for that reason.

4.7.6. Unanswered calls, by stints

This graph tells the stint distribution of unanswered calls. It corresponds to the graph
called "Answered calls, by stints".

4.7.7. All calls, by stints

This graph tells the stint distribution of all processed calls. It corresponds to the sum
of the graphs called "Answered calls, by stints" and "Unanswered calls, by stints"

4.7.8. Enter queue positions

This graph shows the initial queue position that the calls had when they joined the queue.
For example, a queue position of 1 means that a call was first in line, of 5
means that a call had four other calls in line before being answered. As the
logging of queue positions is a bit inconsistent, some calls might be missing
it ("Untracked")

4.7.9. Enter queue positions for all calls

This graph shows the initial queue positions for both answered and unanswered calls.

4.7.10. IVR selection

This graph shows the distribution of IVR selections available for lost calls.
This must be tracked manually in Asterisk - See "Configuring Asterisk for QueueMetrics" below.

4.7.11. IVR selection for all calls

This graph shows the distribution of IVR selections for all calls (taken and lost)
available in the report.

4.7.12. DNIS used

This graph shows the distribution of DNIS lines that lead to lost calls.
This must be tracked manually in Asterisk - See "Configuring Asterisk for QueueMetrics" below.

4.7.13. DNIS used, for all calls

This graph shows the distribution of DNIS lines for all calls (taken and lost)
available in the report.

4.7.14. Details of unanswered calls

This page shows full details of unanswered calls Section 5.3, “Detail of unanswered calls”.

4.8. Understanding results: Area code report

If the Caller*ID is present, it is possible to break down both answered and unanswered
calls to specific area codes by clicking on the "Area code analysis" button.
[image: ./Pictures/image030.png]

By selecting a number of caller id digits to search upon and a starting digit
position, you get a number of statistics grouped by area codes.
This report gives an immediate check of the geographical origin of calls handled by your
call center.
It is possible to export all the reports as needed.

4.9. Understanding results: Inbound ACD call attempts

When running an inbound call center, it is very important to determine the reason
why a call is delayed: are your clients refusing to answer? Did they forget to
log off before leaving their workplace? The inbound ACD call attempts metrics
try to answer to these questions.
As these metrics are not usually recorded by Asterisk, you’ll have to patch and
recompile your Asterisk system in order to gather them - see the section Section 24.6, “Enabling ACD call attempts recording on Asterisk 1.0 and 1.2”.
If you do not do so, the metrics presented here will always appear zeroed out. With Asterisk 1.4, this feature
should be automatically enabled with no need to patch the source code.
[image: ./Pictures/image032.png]

This page shows the following pieces of information:
	
How many agent attempts were made, i.e. how many times the agent’s telephones were rung in total

	
The average number of attempts that were necessary for a taken call; the minimum, maximum and total
 attempts made that resulted in a taken call

	
The average number of attempts that were necessary for a lost call; the minimum, maximum and total
 attempts made that resulted in a lost call

4.9.1. ACD attempts by terminal

This graph breaks down agent attempts by the agent that was called. The following pieces
of information are extracted for each agent:
	
N. of lost agent attempts (i.e. the agent was called but not responding)

	
The average ring time for lost attempts

	
The total ringing time for lost calls

	
The number of taken agent attempts (i.e. calls answered)

	
The average ring duration for taken calls

	
The total ring time for taken calls

4.9.2. ACD attempts by queue

The following metrics are extracted and broken down by queue:
	
N. of lost agent attempts (i.e. the agent was called but not responding)

	
The average ring time for lost attempts

	
The total ringing time for lost calls

	
The number of taken agent attempts (i.e. calls answered)

	
The average ring duration for taken calls

	
The total ring time for taken calls

4.10. Understanding results: Call distribution

The call distribution report shows when calls were handled, when calls were lost and the
average wait times broken down by period.
All percentages are calculated on the call class they belong to, i.e. a 50% of
"Unanswered calls" on one day means that 50% of all unanswered calls for the
period happened during that day, not that 50% of calls were lost.
For each metrics, the total number of calls is shown, together with average, minimum and
maximum times. Graphs are plotted on the total number of calls broken down and
on the averages.
It is possible to change the interval in the Hourly graphs, so that you can have
reports break down calls e.g. by half-hours or hour quarters, by changing a
value in the QueueMetrics master configuration file.
[image: ./Pictures/image034.png]

4.10.1. Call distribution per day

Calls, both taken and lost, are shown per specific day. Days with no events are not shown.
The total numbers of call lengths, wait time for answered calls and wait time
for unanswered calls are plotted for each day. Sales and contacts are also
shown on a daily basis.
The Schedule Adherence report shows the number of distinct agents that were
detected during the given period. This makes it possible to detect the number
of different people that had been working on a given moment.
The Queue Length report shows the average length of the queue for each period, giving
minimums and maximums. The Steps computation shows how fast each queue progresses
during the period, expresses in steps per hour. Note: giving a meaning to the
Queue Length reports may be hard in the case of composite queues.
[image: ./Pictures/image036.png]

4.10.2. Call distribution per hour

Events are shown on a 24-hour distribution. If this graph appears to be incorrect, you
have to run a "Custom report" setting the time zone accordingly (see Section 4.3, “Custom reports”).
The total numbers of call lengths, wait time for answered calls and wait time for
unanswered calls, together with sales and contacts, are plotted for each hourly
interval. The size of hourly intervals can be controlled by the default.hourly_slot configuration
property, making it possible to run this reports based on 30-minute, 20-minute
or 15-minute intervals.
[image: ./Pictures/image038.png]

4.10.3. Call distribution per day of week

This report shows the weekly behaviour of your queues. The longer the analysis period, the more
significant its results will be.
The total numbers of call lengths, wait time for answered calls and wait time for
unanswered calls are plotted for each day of the week.

4.11. Understanding results: Agent activity

Agent activity refers to the behaviour of Asterisk defined agents. If you connect you
queues straight to telephone terminals, this section will always be empty.
Each agent may be flagged as being a member of four priority groups:
	
Main: the agents usually answering the queue

	
Spill: the agents answering the queue if all "Main" agents are busy or unavailable

	
Wrap: the agents answering the queue if all "Main" and "Spill" agents are busy or unavailable

	
Undefined: this agent is not a member of any priority group for this queue

This feature is useful if priority groups are used in the queue configuration. If
they are not used, just assign all agents to "Main" for each queue.
If an unknown agent appears on a queue, it will be marked as "Undefined", written in red.
Agent names are written in blue and are clickable, if you click on them in any of the
graphs, you will be lead to a popup that detail the logon and pause history for that agent.
As a default, QueueMetrics will show and count an agent session if and only if the
agent handled at least one call during this session. This may not be what you
want when you use pause codes - an agent may log on and immediately go on pause
to do some back-end activities. If this is the case, you should set the
configuration option default.useRawAgentSessions to true to see all agent sessions.
[image: ./Pictures/image040.png]

The report shows:
	
How many agents were available for the queue. To be considered available, an agent must have logged in
 and taken at least one call.

	
How much time all agents have been available

	
The average agent available time

	
The minimum and maximum agent session durations

	
The total billable and not billable pause times

4.11.1. Agent availability

This graph shows which agents were available during the specified time frame and the
percentage of agents' available time each one cumulated.
This time is calculated per all queues any agent is a member of, as the act of logging on
is in general for the whole system and not specific to one single queue.
For each agent, the total time on pause - if any - is computed and broken down as "Billable"
or "Not billable" - see the section on Pause Codes.
The "overlapping" is the amount of time that an agent was paused BUT taking calls. As you can pause in the middle of a call (maybe your system doesn’t allow this, but it is conceivable) you could have a period where you are paused BUT on conversation as well.
The % written next to the graph is the percentage of the pause time.

4.11.2. Session and pause duration

For each agent, the total number of sessions and pauses is computed (session time is
already deducted of pause time). For both sessions and pauses, an average length is computed.
The "Pause percentage" is how much time an agent was on pause compared to available time.
The "Pauses per session" computes how many pauses - on average - each agent makes for each
log-in session.
These metrics should be considered according to your call center rules on pauses and
time-out.
[image: ./Pictures/image042.png]

4.11.3. Answered calls for selected queues

This graph shows who of your agents answered calls for the queues you selected. The number
of calls, together with total and average call durations are computed accordingly.

4.11.4. Answered calls by service groups

This graph show which priority levels handled calls for your queue. This shows whether
your main line is staffed enough to handle the load of incoming calls.

4.11.5. Session details

By clicking on the "Detail" button, a new page is shown, detailing each agent session that
was recorded.
[image: ./Pictures/image044.png]

For each agent session, the start and end times are recorded, together with the total
duration in seconds.
If the agent logs on via the call back function, the designated call back extension is
shown.
The number of pauses and the total pause time in seconds is shown.
The "Srv" column tells you on which server an agent was working in case you set up a
cluster of Asterisk servers.
It is possible to sort the table for each title, in either descending and ascending
order. To do this, click once on the desired title for descending sort, and
twice for ascending sort. Once the table is sorted, an arrow symbol will appear close to the title,
so you know on which column it was
sorted last. As the sorting is done on the client machine, it may take a while
with very large tables.

4.11.6. Pause activity details

This table shows the specific pauses that each agent took and the pause code that was
entered for each pause. It also shows whether the pause taken was considered to
be billable or non-billable.
[image: ./Pictures/image046.png]

4.11.7. Agent history popup

If you click on an agent’s name, a new popup will appear with full history for that
agent. You can scroll in it as needed by using arrow keys or the wheel of your
mouse.
[image: ./Pictures/popup_agent.png]

A complete description of the popup is available in the Report Details: Section 6.11.3, “Popup of agent activity” .

4.12. Understanding results: Call outcomes

If your agents are entering Pause codes or Call outcomes, the "Outcomes" tab will let
you report on the information they just entered.
[image: ./Pictures/image050.png]

The top panel will display an overview of the situation, showing:
	
How much billable time there has been on this system, broken down by ACD/call time ("agent available
 time") and billable activities (agent on pause)

	
The total non billable time (e.g. lunch, breaks)

	
The total number of Contacts, Qualified Contacts and Sales, as defined by call outcome codes

	
The Sales per Hour (SPH), Qualified Contacts per hour (QCPH) and Contacts per Hour (CPH) ratios

	
The Conversion index, that is the percentage of sales over the total number of sales and contacts.

Further down the page, you can find details explaining Billable and Non-billable
activities, with average, minimum and maximum session durations, and a
percentage on all activities of the same kind.
[image: ./Pictures/image052.png]

The Detailed Agent Report will show, for each agent:
	
The Available (ACD) time, as an absolute value and a percentage of its total time logged on

	
The Billable time, as an absolute value and a percentage of its total time logged on

	
The Non-Billable time, as an absolute value and a percentage of its total time logged on

	
The number of Sales And Contacts the agent had (if a sale is counted a s both a Sale
 and a Contact, it’s counted only once as a Sale)

	
The Sales per Hour (SPH) and Contacts per Hour (CPH) ratios for this agent

	
The Conversion ratio, that is the percentage of sales over the total number of sales and contacts.

4.12.1. How are Call Outcomes calculated?

The idea is that a call can be a Contact, or a specialized contact that is a Qualified
Contact, or a specialized Qualified Contact that is a Sale
This is needed because all the SPH, CPH and QCPH are calculated not on the totals of
each class, but on sums of that class and generic types, like:
S = Number of Sales
C = Number of Contacts
Q = Number of Qualified Contacts

CPH = C / (logon time - pause time)
QCPH = Q / (logon time - pause time)
SPH = S / (logon time - pause time)
Conversion indexes are calculated as:
CO% = S / C
QC% = S / Q

Chapter 5. Showing call details

As shown above, QM lets you see the very detail of calls handled by Asterisk.
5.1. Detail of answered calls

[image: ./Pictures/image054.png]

For each answered call, the following information is shown:
	
Date and time for the call;

	
The Caller-ID, if available (the Caller-ID format may differ according to your local Telco - in some
 countries it include the full name of the caller, in others it might be a
 number and in others it may be unavailable at all);

	
The queue that handled the call;

	
The total waiting time before the agent was connected;

	
The duration of the call, talking to an agent;

	
The initial position of the call

	
The cause of disconnection;

	
Which agent or terminal handled the call.

	
How many agent attempts were made before this call was answered

	
The call completion code your agents entered

	
How many stints make up this call

	
The server that handled this call (in the case of clusters)

Optionally other information could be shown:
	
The asterisk unique ID associated to each call

	
An icon that opens a new web page with an URL user customizable (useful for proprietary CRM integrations).
To enable these two columns, the keys default.crmapp and default.showAstClid have to be correctly set.
Please read Section 21.19, “Configuring system preferences” and Appendix D, System preferences for further details.

It is possible to sort the table for each title, in either descending and ascending
order. To do this, click once on the desired title for descending sort, and
twice for ascending sort. Once the table is sorted, an arrow symbol
will appear close to the title, so you know on which column it was
sorted last. As the sorting is done on the client machine, it may take a while
with very large tables.
If you click on the small icon on the right, it will be possible to see the
details of the call, including:
	
Asterisk’s internal Call-ID code

	
The call date and time

	
The caller-id (if any)

	
The agent handling the call

	
The call duration

	
The wait time

	
The disconnection cause

	
The extension the call was transferred to

	
The URL that was linked to this call through the Queue() command, if any

	
The call status code

	
The server that handled this call

	
The sound files (one or more) that were recorded for this call (see below).

If the call is ongoing and you have the special grants to do so, a red scissor icon might
appear next to the call status to allow for brute-force call closure. See the
section Section 24.14, “Closing ongoing calls” for further details.
The call may also display:
	
If the call has more than one stint - that is was rebuilt through multi-stint mode - then a list of stints is visible. If a call has only one stint, then the Stints tab is not needed and appears disabled. See Chapter 15, Multi-stint calls

	
If a call has events on it - that is specific items happening at points in time that go beyond what is displayed for the main call - they are shown in the Events tab. If not, they are disabled. The ones currently tracked are IVR traversal events, failed call connection attempts and music-on-hold events.

	
A set of markers (Note: QueueMetrics till release 14.10.4 shows "tags" instead of markers).

	
A link to open the QA form(s) available for that call

5.2. Listening to answered calls

If there are audio recordings, they will be shown by the bottom of the call details page.
If the call was monitored, i.e. recorded to disk, a number of sound files may be shown. By
clicking on a sound file you can listen to it straight from your browser.
You can optionally have other types of media linked to a specific call,
for example chat transcripts, free text or documents. They will be opened
in the browser.
Please note that:
	
The recorded file name must contain the Asterisk Call ID for QM to relate it to the
 call - see Section 24.3, “Listening to recorded calls using QM” for tips on how to configure Asterisk
 correctly to implement this feature;

	
The audio storage on the Asterisk server must be readable by the servlet container;

	
You must have the correct sound codecs to listen to the sound file on your PC. WAV files usually work out
 of the box but are comparatively quite big, while GSM files require an
 additional codec pack on most Windows machines but consume disk storage
 much more efficiently. The best compromise is usually to use the WAV49
 format on Asterisk, that is played natively by Windows machines but has a
 compression and sound quality comparable to the GSM format. The HTML5 player
 requires WAV or MP3 files.

	
Asterisk will usually record two different sound files - one for the caller and the other for the agent
 and will then mix them together at the end of the call. If this does not
 happen automatically, you might find two different sound files, named
 "-in" and "-out", each of which contains the voice of one of the parties.
 If your call is a multi-stint call, you may find a number of different
 sound files for it.

	
It is possible to use different PMs to handle different audio needs - see Chapter 22, Listening to calls using Pluggable Modules (PM).

	
If generated by Asterisk, QueueMetrics can display a variety of other file type call attachments,
 ie. calls that are shown with a file extension that is not necessarily a
 sound file (image, video, audio, text or application files).

It is also possible to add markers in order to keep notes about "points of interest" for the call at hand, as shown in the example below:
[image: ./Pictures/markers_list.png]

By clicking on the Play icon next to a marker, the correct audio recording is loaded in the embedded player and it is started at the point
in time specified in the marker.
	[image: [Note]]	
	Until release 14.10.4, QueueMetrics used the name "tags" instead of "markers".

5.2.1. The HTML5 Audio Player and Markers

Since QueueMetrics 15.02, it is possible to play audio straight in the browser using an HTML5-enabled audio player.
This has many advantages:
	
You can play the audio straight in the browser, jumping back and forth as needed

	
You can speed-up the audio playing, in order to take less time to listen to calls

	
It integrates with the Markers editor, so you can add a comment at a specific point in time and see it later.
 When you click on a comment, the audio editor starts playing at that very point in time.

This is extermely powerful, and can be done either on the Call Details panel (under the Markers tab) or
on the QA form.
In order for this to work, you need:
	
A modern browser supporting HTML5 audio playback

	
The system property 'audio.html5player' must be set to true.

	
If audio files are hosted outside of QueueMetrics, your HTTP server must support Http-Range requests. QueueMetrics
 supports Http-Range file streaming natively.

	
Files must be stored in a format that is compatible with the browser. Presenty this means that your audio files should either
 be saved as WAV or MP3. GSM and WAV49 files will likely not work.

	
Streaming is not supported for encoded audio recordings.

Users having the capacity of adding and removing markers should hold the keys CALLMONITOR_ADDTAGS and CALLMONITOR_DELTAGS respectively.
[image: ./Pictures/markers_add.png]

The following pieces of information are tracked through the Markers page:
	
System ID and Asterisk unique-id; marker author and time

	
Time offset and duration (in seconds). You can leave the duration field blank. Values can be input as an integer number of seconds or as MM:SS

	
A title (max 200 characters). Newline characters are allowed.

	
A color for display (this may be used to set, say, all sales in red, all issues in blue, etc).

5.3. Detail of unanswered calls

The unanswered calls detail is quite similar to that of answered calls.
[image: ./Pictures/image058.png]

The following data are shown:
	
Date and time of the lost call;

	
The Agent that placed the call (if it’s outbound) or blank if inbound;

	
Caller-ID;

	
Queue that handled the call;

	
Disconnection cause;

	
Position at disconnection, if available;

	
Waiting time before disconnection, if available;

	
The initial position of the call when it joined the queue, if available;

	
The number of Agent attempts made before disconnection;

	
The call code, if entered (this might be added automatically, e.g. by outbound diallers marking
 unsuccessful attempts as "unanswered" versus "fax" or "voicemail")

	
The key pressed on disconnection (if any)

	
The number of stints this call has

	
The server that handled the call

Optionally other information could be shown:
	
The asterisk unique ID associated to each call

	
An icon that opens a new web page with an URL user customizable (useful for proprietary CRM integrations).
To enable these two columns, the keys default.crmapp and default.showAstClid have to be correctly set.
Please read Section 21.19, “Configuring system preferences” and Appendix D, System preferences for further details.

Please note that on a queue timeout, Asterisk will not report the waiting time, as it is
fixed and same as the queue timeout.
It is possible to sort the table for each column, in either descending and ascending
order. To do this, click once on the desired title for descending sort, and
twice for ascending sort. Once the table is sorted, an arrow symbol
will appear close to the title, so you know on which column it was
sorted last. As the sorting is done on the client machine, it may take a while
with very large tables.
If the call is ongoing and you have the special grants to do so, a red scissor icon might
appear next to the call status to allow for brute-force call closure. See the
section Section 24.14, “Closing ongoing calls” for further details.

5.4. Detail of IVR calls

IVR calls, that is calls that were handled without being queued,
can be displayed through the pop-up linked to the Section 6.2.4, “OD04 - IVR details (paged)” data block.
The contents are very similar to the information displayed for taken or lost calls,
though the only information currently tracked are call IVR events, DID and caller-id.

Chapter 6. Report Details

Reports can be fully configured by deciding which of the following
blocks shall be included in each - see Configuring reports
Section 21.12, “Configuring reports”.
The default report already includes all common blocks.
6.1. Historical reports - Answered calls

6.1.1. OK01 - All calls

[image: ./Pictures/image_rep_OK01.png]

The answered calls section deals with calls that were correctly handled by agents.
The top panel shows:
	
How many calls were handled;

	
The average call length (i.e. time the caller spends talking to an operator);

	
The maximum and minimum call lengths recorded for the given time period;

	
The total call length (for all calls on all operators);

	
The average call waiting time (i.e. the time a caller was waiting on a queue before being connected to
 an operator).

	
The minimum and maximum call waiting times on record

	
The total waiting time for all handled calls.

	
The average initial position of the call in the queue

	
The minimum and maximum initial queue positions that have been detected

	
The queue position coverage: as this information is not tracked for all calls, this ratio shows the average number of calls that had queue position record.

	Available since
	1.6.0

	Default page
	Answered calls

	Shortcut code
	OK01

	XML-RPC code
	OkDO.RiassAllCalls

	Parameters
	-

	See also
	

6.1.2. OK02 - Calls fully within the given time interval

[image: ./Pictures/image_rep_OK02.png]

The answered completed calls section deals with calls that were correctly handled by agents.
This is similar to what’s reported on previous panel but may exclude calls that were started before or
terminated after the given time frame.
	Available since
	1.6.0

	Default page
	Answered calls

	Shortcut code
	OK02

	XML-RPC code
	OkDO.RiassFullyWithin

	Parameters
	-

	See also
	OK01 - All calls

6.1.3. OK03 - Agents on queue

[image: ./Pictures/image_rep_OK03.png]

This report shows which agents have been available for the given queue, how many calls each
one handled and the percentage of all calls that each one handled.
If calls are connected directly to a phone terminal, QM tries its best to show the
corresponding terminal, usually in the format used by Asterisk, like "SIP/303"
to signify a SIP phone whose number is 303.
If you connect to H.323 telephones via the OH323 module, the recorded channel names
have no meaning and do not refer to a specific terminal; that’s why all OH323
calls are grouped together under the label "OH323/-".
The pie graph shows which agents have been available for the given queue representing the
percentage of all calls that each one handled.
	Available since
	1.6.0

	Default page
	Answered calls

	Shortcut code
	OK03

	XML-RPC code
	OkDO.AgentsOnQueue

	Parameters
	-

	See also
	

6.1.4. OK04 - Service level agreement

[image: ./Pictures/offered_calls.png]

This report shows the distribution of call waiting times. It shows how many calls were
answered within a given time frame, usually 120 seconds in 10 second increments
(the time frame and increment can be modified by the administrator, if needed -
see below).
You get a percentage of how many calls were answered within X seconds; the percentage
includes calls answered in a shorter time frame and therefore grows with time.
The "delta" value you see is the absolute increment, expressed in number of calls, between
each time frame, while the "Offered" column displays the result of the taken calls divided by the total taken plus the total lost.
This metric is computed only on answered calls, i.e. ignoring lost calls . If your SLA is defined in terms of taken and lost calls, see the
corresponding metrics "Inclusive SLA" on Section 4.7.4, “Inclusive Service Level Agreement”.
The graph reports the percentage of how many calls were answered within X seconds, as reported in the table.
Since 1.6.2, it is possible to configure the time frame and increment separately
for an initial period and the rest of the interesting period; in this way it is possible
to have different breakdowns, e.g. every 5 seconds up to 20 seconds and every 10 seconds
up to 120 seconds. See Section 21.19, “Configuring system preferences”.
For example, by setting:
	
initial_interval=5 and max_initial_interval=20

	
interval=10 and max_monitored_delay=60

You get the following cutoff points: 5, 10, 15, 20, 30, 40, 50, 60 seconds
By setting:
	
initial_interval=3 and max_initial_interval=3

	
interval=5 and max_monitored_delay=60

You get the following cutoff points: 3, 5, 10, 15, 20, 25,… seconds
By setting
	
initial_interval=0 and max_initial_interval=0

	
interval=10 and max_monitored_delay=120

You get the default cutoff points: 10, 20, 30, 40, 50 , 60, 70, 80, 90, 100, 110 and 120 seconds
	Available since
	1.6.0

	Default page
	Answered calls

	Shortcut code
	OK04

	XML-RPC code
	OkDO.ServiceLevelAgreement

	Parameters
	-

	See also
	UN18 UN07 UN06

6.1.5. OK05 - Disconnection causes

[image: ./Pictures/image_rep_OK05.png]

This report shows the reason why calls were terminated; this means that:
	
The agent hung up, or

	
The caller hung up, or

	
The call was transferred outside the queue and the agent was freed again, or

	
The call was ongoing at the time the report was run.

The graph reports the percentage values associated to the reason of why calls were terminated,
as calculated in the table.
	Available since
	1.6.0

	Default page
	Answered calls

	Shortcut code
	OK05

	XML-RPC code
	OkDO.DisconnectionCauses

	Parameters
	-

	See also
	

6.1.6. OK06 - Transfers

[image: ./Pictures/image_rep_OK06.png]

This graph shows how many calls were transferred to each extension in the given time
frame. This lets you know who is handling exception calls.
	[image: [Note]]	
	when a call is transferred outside the queue system, its length is no more recorded
by the queue subsystem; therefore you only get to see the length of the call
while the agent was on line.

	Available since
	1.6.0

	Default page
	Answered calls

	Shortcut code
	OK06

	XML-RPC code
	OkDO.Transfers

	Parameters
	-

	See also
	

6.1.7. OK07 - Answered calls, by queue

[image: ./Pictures/image_rep_OK07.png]

If more than one queue is in use for the report, this table shows the relative
magnitude of each queue.
The graph reports the percentage associated to each queue in the table.
	Available since
	1.6.0

	Default page
	Answered calls

	Shortcut code
	OK07

	XML-RPC code
	OkDO.AnsweredcallsByQueue

	Parameters
	-

	See also
	

6.1.8. OK08 - Answered calls, by direction

[image: ./Pictures/image_rep_OK08.png]

If more than one queue is in use for the report, this table shows the relative
magnitude of each queue.
Inbound queues are marked with the symbol
[image: ./Pictures/image025.png]
while outbound queues use the symbol
[image: ./Pictures/image026.png]
.
The graph reports the percentage associated to each queue in the table.
	Available since
	1.6.0

	Default page
	Answered calls

	Shortcut code
	OK08

	XML-RPC code
	OkDO.AnsweredcallsByDirection

	Parameters
	-

	See also
	

6.1.9. OK09 - Answered calls, by stints

[image: ./Pictures/image_rep_OK09.png]

This graph counts the distribution of multi-stint calls on selected queues. If multi-stint
mode is not enable, all calls will have only one stint.
	Available since
	1.6.0

	Default page
	Answered calls

	Shortcut code
	OK09

	XML-RPC code
	OkDO.StintsOk

	Parameters
	-

	See also
	

6.1.10. OK10 - Queue position

[image: ./Pictures/image_rep_OK10.png]

This graph shows the initial queue position that the calls had when they joined the queue.
For example, a queue position of 1 means that a call was first in line, of 5
means that a call had four other calls in line before being answered. As the
logging of queue positions is a bit inconsistent, some calls might be missing
it ("Untracked")
	Available since
	1.6.0

	Default page
	Answered calls

	Shortcut code
	OK10

	XML-RPC code
	OkDO.QPosOk

	Parameters
	-

	See also
	

6.1.11. OK11 - IVR selection

[image: ./Pictures/IVR_duration.png]

This graph shows the distribution of IVR selections available in the calls processed.
We can also see the IVR duration values, which is related to the time that the call was within the IVR before entering the queue.
This must be tracked manually in Asterisk - See "Configuring Asterisk for QueueMetrics" below.
	Available since
	1.6.0

	Default page
	Answered calls

	Shortcut code
	OK11

	XML-RPC code
	OkDO.IvrOk

	Parameters
	-

	See also
	

6.1.12. OK12 - DNIS used

[image: ./Pictures/image_rep_OK12.png]

This graph shows the distribution of DNIS lines available in the calls processed.
This must be tracked manually in Asterisk - See "Configuring Asterisk for QueueMetrics" below.
	Available since
	1.6.0

	Default page
	Answered calls

	Shortcut code
	OK12

	XML-RPC code
	OkDO.DnisOk

	Parameters
	-

	See also
	

6.1.13. OK13 - Music On Hold by Agent

[image: ./Pictures/image_rep_OK13.png]

This allows to see the total number of Music on Hold (MOH) events per agent, how many MOH instances took place throughout a call, the average and total duration of MOH events.
This must be tracked manually in Asterisk - See "Configuring Asterisk for QueueMetrics" below.
	Available since
	12.2.0

	Default page
	Answered calls

	Shortcut code
	OK13

	XML-RPC code
	OkDO.MOHOk

	Parameters
	-

	See also
	

6.1.14. OK14 - Report Header

[image: ./Pictures/image_rep_OK14.png]

This is the report header and will be added automatically on each tab on the screen and at the beginning of each session in the PDF and Excel report export.
	Available since
	13.04.9

	Default page
	Beginning of each page

	Shortcut code
	OK14

	XML-RPC code
	OkDO.HDRRpt

	Parameters
	-

	See also
	HDRRpt

6.2. Historical reports - Details of answered calls

6.2.1. OD01 - Queue details

[image: ./Pictures/image_rep_OD01.png]

This page shows the detail of answered calls. See Chapter 5, Showing call details.
When running a report, it is advisable to use block Section 6.2.3, “OD03 - Queue details (paged)” instead.
	Available since
	1.6.0

	Default page
	Details of answered calls

	Shortcut code
	OD01

	XML-RPC code
	DetailsDO.CallsOK

	Parameters
	-

	See also
	Section 6.2.3, “OD03 - Queue details (paged)”

6.2.2. OD02 - Add to export job

[image: ./Pictures/image_rep_OD02.png]

This is a pseudo-block that is used to display a button for call export.
The button may not be displayed if the user does not have the correct grants.
As it does not actually contain data, it cannot be queried over XML-RPC.
	Available since
	1.7.0

	Default page
	Details of answered calls

	Shortcut code
	OD02

	XML-RPC code
	-

	Parameters
	-

	See also
	

6.2.3. OD03 - Queue details (paged)

[image: ./Pictures/image_rep_OD03.png]

This page shows the paged detail of answered calls. See Chapter 5, Showing call details.
The details of calls are paged - so you can move back and forth - and you can control which
columns will appear on screen. The paged mode uses way less memory and is quicker to use than
the full list as in Section 6.2.1, “OD01 - Queue details”.
When accessing the data source though XML-RPC or printing a report, it is mandatory to use
the OD01 block, as this block is interactive and will not render correctly.
	Available since
	13.03

	Default page
	Details of answered calls

	Shortcut code
	OD03

	XML-RPC code
	-

	Parameters
	-

	See also
	Section 6.2.1, “OD01 - Queue details” and Section 21.15, “Configuring paged call lists”

6.2.4. OD04 - IVR details (paged)

[image: ./Pictures/image_rep_OD04.png]

This block shows the paged detail of IVR calls. These are calls that did not hit a queue
in the current report and thererfore are reported as neither answered nor unanswered.
The details of calls are paged - so you can move back and forth - and you can control which
columns will appear on screen. The paged mode uses way less memory and is quicker to use than
the full list as in Section 6.2.5, “OD05 - IVR details (full list)”.
When accessing the data source though XML-RPC or printing a report, it is mandatory to use
the OD05 block, as this block is interactive and will not render correctly.
	Available since
	13.03

	Default page
	Details of answered calls

	Shortcut code
	OD04

	XML-RPC code
	-

	Parameters
	-

	See also
	Section 6.2.5, “OD05 - IVR details (full list)”

6.2.5. OD05 - IVR details (full list)

[image: ./Pictures/image_rep_OD05.png]

This block shows the paged detail of IVR calls. These are calls that did not hit a queue
in the current report and thererfore are reported as neither answered nor unanswered.
This block prints a complete list and should be used only for printing and XML-RPC querying.
	Available since
	13.03

	Default page
	Details of answered calls

	Shortcut code
	OD05

	XML-RPC code
	DetailsDO.CallsIVR

	Parameters
	-

	See also
	Section 6.2.4, “OD04 - IVR details (paged)”

6.3. Historical reports - Unanswered calls

Unanswered calls are calls that were lost, i.e. the caller could not connect to an agent.
This usually means that either the caller hung up, fed up with waiting, or the
queue system decided to discharge the caller, maybe sending him to voicemail or
another queue.
	[image: [Note]]	
	if you run a report with an agent filter, or a supervisor filter, or
a location filter, the number of lost calls in the report is usually zero,
showing just outgoing calls, if any.
This is because the agent is specified only for taken calls and not lost ones,
so not deleting them all would show, e.g.,
the taken call data for one single agent and the lost calls for all of the
queue. You can override this behaviour through a configuration switch if you
feel this is not correct for you.

6.3.1. UN01 - All calls

[image: ./Pictures/image_rep_UN01.png]

The report shows:
	
How many calls were lost;

	
The average waiting time before disconnection;

	
The average queue position at disconnection (i.e. how many calls the queue had to dispatch before
 connecting the caller to an operator).

	
The minimum and maximum wait times

	
The minimum and maximum queue position at disconnect.

	
The average, minimum and maximum initial queue position, and the coverage given for this
 computation

	Available since
	1.6.0

	Default page
	Unans.

	Shortcut code
	UN01

	XML-RPC code
	KoDO.ReportKoAll

	Parameters
	-

	See also
	

6.3.2. UN02 - Calls fully within the given time interval

[image: ./Pictures/image_rep_UN02.png]

The unanswered completed calls section deals with calls that were lost.
This is similar to what’s reported on previous panel but may exclude calls that were started before or
terminated after the given time frame.
	Available since
	1.6.0

	Default page
	Unans.

	Shortcut code
	UN02

	XML-RPC code
	KoDO.ReportKoFully

	Parameters
	-

	See also
	

6.3.3. UN03 - Disconnection causes

[image: ./Pictures/image_rep_UN03.png]

This report shows the relative magnitude of disconnection causes, that are:
	
The caller hung up, or

	
The queue timed out and
 discharged the caller (if this feature is enabled by the queue configuration - see Chapter 24, Configuring Asterisk for QueueMetrics), or

	
The caller exited the queue by pressing a key (if this feature is enabled by the queue configuration).

	Available since
	1.6.0

	Default page
	Unans.

	Shortcut code
	UN03

	XML-RPC code
	KoDO.DiscCauses

	Parameters
	-

	See also
	

6.3.4. UN04 - Unanswered calls, by queue

[image: ./Pictures/image_rep_UN04.png]

If more than one queue is in use for the report, this graph shows the relative
magnitude of each queue, either in a numerical than in a graphical form.
	Available since
	1.6.0

	Default page
	Unans.

	Shortcut code
	UN04

	XML-RPC code
	KoDO.UnansByQueue

	Parameters
	-

	See also
	

6.3.5. UN05 - Unanswered outbound calls, by agent

[image: ./Pictures/image_rep_UN05.png]

This graph shows the relative magnitude of unanswered outbound calls, grouped by agent.
	Available since
	1.6.0

	Default page
	Unans.

	Shortcut code
	UN05

	XML-RPC code
	KoDO.OutboundKo

	Parameters
	-

	See also
	

6.3.6. UN06 - Unanswered calls - distribution by length

[image: ./Pictures/unansw_offered_calls.png]

This report is functionally equivalent to "Service level agreement" in the Answered calls
section (see Section 4.6.2, “Service level agreement”), but is computed on lost calls. It
shows how many calls were hung up within a given time frame, usually 120
seconds in 10 second increments (the time frame and increment can be modified
by the administrator, if needed - see Section 6.1.4, “OK04 - Service level agreement”).
You get a percentage of how many calls were lost within X seconds; the percentage
includes calls lost in a shorter time frame and therefore grows with time.
The "delta" value you see is the absolute increment, expressed in number of calls, between
each time frame, while the "Offered" column displays the result of the taken calls divided by the total taken plus the total lost.
The graph reports the percentage of how many calls were not answered within X seconds, as reported in the table.
	Available since
	1.6.0

	Default page
	Unans.

	Shortcut code
	UN06

	XML-RPC code
	KoDO.UnansByLen

	Parameters
	-

	See also
	UN07 UN18 OK04

6.3.7. UN07 - Inclusive SLA (computed on both answered and unanswered calls)

[image: ./Pictures/image_rep_UN07.png]

The inclusive SLA corresponds to the Service Level
Agreement metrics shown on Section 4.6.2, “Service level agreement”, with the difference that it is
computed taking into consideration both answered and unanswered calls.
The difference between UN07 and UN18 is that the number of calls in UN18 is only the number
of taken calls within the given answer period, while in UN07 it is the total number of taken
and lost calls within the time period.
The graph reports the same information found in the table, but in a graphical way.
The time frame and increment can be modified by the administrator, if needed - see Section 6.1.4, “OK04 - Service level agreement”.
	Available since
	1.6.0

	Default page
	Unans.

	Shortcut code
	UN07

	XML-RPC code
	KoDO.InclusiveSLA

	Parameters
	-

	See also
	OK04 UN06 UN18 (Inclusive Answered SLA)

6.3.8. UN08 - Unanswered calls by key press

[image: ./Pictures/image_rep_UN08.png]

If there are any calls that are were set unanswered because the caller pressed a key to
exit the queue, this graph shows which keys were pressed and how many calls
were terminated for that reason.
	Available since
	1.6.0

	Default page
	Unans.

	Shortcut code
	UN08

	XML-RPC code
	KoDO.ReportKoKeyPress

	Parameters
	-

	See also
	

6.3.9. UN09 - Unanswered calls, by stints

[image: ./Pictures/image_rep_UN09.png]

This graph tells the stint distribution of unanswered calls. It corresponds to the graph
called "Answered calls, by stints".
	Available since
	1.6.0

	Default page
	Unans.

	Shortcut code
	UN09

	XML-RPC code
	KoDO.StintsKo

	Parameters
	-

	See also
	

6.3.10. UN10 - All calls, by stints

[image: ./Pictures/image_rep_UN10.png]

This graph tells the stint distribution of all processed calls. It corresponds to the sum
of the graphs called "Answered calls, by stints" and "Unanswered calls, by stints"
	Available since
	1.6.0

	Default page
	Unans.

	Shortcut code
	UN10

	XML-RPC code
	KoDO.StintsOkKo

	Parameters
	-

	See also
	

6.3.11. UN11 - Enter queue position

[image: ./Pictures/image_rep_UN11.png]

This graph shows the initial queue position that the calls had when they joined the queue.
For example, a queue position of 1 means that a call was first in line, of 5
means that a call had four other calls in line before being answered. As the
logging of queue positions is a bit inconsistent, some calls might be missing
it ("Untracked")
	Available since
	1.6.0

	Default page
	Unans.

	Shortcut code
	UN11

	XML-RPC code
	KoDO.QPosKo

	Parameters
	-

	See also
	

6.3.12. UN12 - Enter queue position for all calls

[image: ./Pictures/image_rep_UN12.png]

This graph shows the initial queue positions for both answered and unanswered calls.
	Available since
	1.6.0

	Default page
	Unans.

	Shortcut code
	UN12

	XML-RPC code
	KoDO.QPosOkKo

	Parameters
	-

	See also
	

6.3.13. UN13 - IVR selection

[image: ./Pictures/IVR_duration.png]

This graph shows the distribution of IVR selections available for lost calls.
We can also see the IVR duration values, which is related to the time that the call was within the IVR before entering the queue.
This must be tracked manually in Asterisk - See "Configuring Asterisk for QueueMetrics" below.
	Available since
	1.6.0

	Default page
	Unans.

	Shortcut code
	UN13

	XML-RPC code
	KoDO.IvrKo

	Parameters
	-

	See also
	

6.3.14. UN14 - IVR selection, for all calls

[image: ./Pictures/image_rep_UN14.png]

This graph shows the distribution of IVR selections for all calls (taken and lost)
available in the report.
	Available since
	1.6.0

	Default page
	Unans.

	Shortcut code
	UN14

	XML-RPC code
	KoDO.IvrOkKo

	Parameters
	-

	See also
	

6.3.15. UN15 - DNIS used

[image: ./Pictures/image_rep_UN15.png]

This graph shows the distribution of DNIS lines that lead to lost calls.
This must be tracked manually in Asterisk - See "Configuring Asterisk for QueueMetrics" below.
	Available since
	1.6.0

	Default page
	Unans.

	Shortcut code
	UN15

	XML-RPC code
	KoDO.DnisKo

	Parameters
	-

	See also
	

6.3.16. UN16 - DNIS used, for all calls

[image: ./Pictures/image_rep_UN16.png]

This graph shows the distribution of DNIS lines for all calls (taken and lost)
available in the report.
	Available since
	1.6.0

	Default page
	Unans.

	Shortcut code
	UN16

	XML-RPC code
	KoDO.DnisOkKo

	Parameters
	-

	See also
	

6.3.17. UN17 - Call Overview

[image: ./Pictures/image_rep_UN17.png]

The answered calls section deals with calls that were correctly handled by agents.
For each queue included in the report, the following data will be shown:
	
Calls offered: total number of calls in the period to hit that queue

	
Calls answered: total number of answered calls

	
Lost calls: total number of calls that have not been answered

	
Average call length: it computed only on the talk time of answered calls, expressed as MM:SS

	
Total call length: the total cumulate speak time for each queue, expressed as decimalized hours

	
Average wait Q: the average wait time for both answered and lost calls

	
Total wait Q: total cumulate wait time for answered and unanswered calls, expressed as decimalized hours

In the first line, there is a "Total" line, that sums up the values shown in previous lines.
The following lines are sorted according to the number of offered calls.
	Available since
	1.6.1.1

	Default page
	Unanswered calls

	Shortcut code
	UN17

	XML-RPC code
	KoDO.OverviewOkKo

	Parameters
	-

	See also
	

6.3.18. UN18 - Inclusive Answered SLA

[image: ./Pictures/image_rep_UN18.png]

The inclusive SLA corresponds to the Service Level
Agreement metrics shown on Section 4.6.2, “Service level agreement”, with the difference that it is
computed taking into consideration both answered and unanswered calls.
The difference between UN07 and UN18 is that the number of calls in UN18 is only the number
of taken calls within the given answer period, while in UN07 it is the total number of taken
and lost calls within the time period.
The graph reports the same information found in the table, but in a way that is easier to read.
The time frame and increment can be modified by the administrator, if needed - see Section 6.1.4, “OK04 - Service level agreement”.
	Available since
	1.6.1.2

	Default page
	Unans.

	Shortcut code
	UN18

	XML-RPC code
	KoDO.InclusiveAnswSLA

	Parameters
	-

	See also
	UN07 (Inclusive SLA) UN06 OK04

6.4. Historical reports - Details of unanswered calls

6.4.1. UD01 - Detail of unanswered calls

[image: ./Pictures/image_rep_UD01.png]

This page shows full details of unanswered calls Section 5.3, “Detail of unanswered calls”.
In general this data block should not be used in reports but block Section 6.4.2, “UD02 - Lost calls (paged)” should
be preferred.
	Available since
	1.6.0

	Default page
	Details of unanswered calls

	Shortcut code
	UD01

	XML-RPC code
	DetailsDO.CallsKO

	Parameters
	-

	See also
	Section 6.4.2, “UD02 - Lost calls (paged)”

6.4.2. UD02 - Lost calls (paged)

[image: ./Pictures/image_rep_UD02.png]

This page shows the paged detail of unanswered calls. See Chapter 5, Showing call details.
The details of calls are paged - so you can move back and forth - and you can control which
columns will appear on screen. The paged mode uses way less memory and is quicker to use than
the full list as in Section 6.4.1, “UD01 - Detail of unanswered calls”.
When accessing the data source though XML-RPC or printing a report, it is mandatory to use
the UD01 block, as this block is interactive and will not render correctly.
	Available since
	13.03

	Default page
	Details of unanswered calls

	Shortcut code
	UD02

	XML-RPC code
	-

	Parameters
	-

	See also
	Section 6.4.1, “UD01 - Detail of unanswered calls” and Section 21.15, “Configuring paged call lists”

6.5. Historical reports - Area code analysis

6.5.1. AC01 - Area code report

[image: ./Pictures/image_rep_AC01.png]

If the Caller*ID is present, it is possible to break down both answered and unanswered
calls to specific area codes by clicking on the "Area code analysis" button.
By selecting a number of caller id digits to search upon and a starting digit
position, you get a number of statistics grouped by area codes.
This report gives an immediate check of the geographical origin of calls handled by your
call center.
	Available since
	1.6.0

	Default page
	Area code analysis

	Shortcut code
	AC01

	XML-RPC code
	AreaAnDO.Setup

	Parameters
	-

	See also
	

6.5.2. AC02 - Detail for answered calls

[image: ./Pictures/image_rep_AC02.png]

This report shows the answered calls grouped following the rules defined in AC01 - Area code report.
	Available since
	1.6.0

	Default page
	Area code analysis

	Shortcut code
	AC02

	XML-RPC code
	AreaAnDO.CallsOK

	Parameters
	-

	See also
	AC01 - Area code report

6.5.3. AC03 - Detail for unanswered calls

[image: ./Pictures/image_rep_AC03.png]

This report shows the unanswered calls grouped following the rules defined in AC01 - Area code report.
	Available since
	1.6.0

	Default page
	Area code analysis

	Shortcut code
	AC03

	XML-RPC code
	AreaAnDO.CallsKO

	Parameters
	-

	See also
	AC01 - Area code report

6.6. Historical reports - Distributions

When running an inbound call center, it is very important to determine the reason
why a call is delayed: are your clients refusing to answer? Did they forget to
log off before leaving their workplace? The inbound ACD call attempts metrics
try to answer to these questions.
As these metrics are not usually recorded by Asterisk, you’ll have to patch and
recompile your Asterisk system in order to gather them - see the section Section 24.6, “Enabling ACD call attempts recording on Asterisk 1.0 and 1.2”.
If you do not do so, the metrics presented here will always appear zeroed out. With Asterisk 1.4, this feature
should be automatically enabled with no need to patch the source code.
6.6.1. AT01 - Inbound ACD call attempts

[image: ./Pictures/image_rep_AT01.png]

This page shows the following pieces of information:
	
How many agent attempts were made, i.e. how many times the agent’s telephones were rung in total

	
The average number of attempts that were necessary for a taken call; the minimum, maximum and total
 attempts made that resulted in a taken call

	
The average number of attempts that were necessary for a lost call; the minimum, maximum and total
 attempts made that resulted in a lost call

	Available since
	1.6.0

	Default page
	Distrib.

	Shortcut code
	AT01

	XML-RPC code
	DistrDO.ReportAcd

	Parameters
	-

	See also
	

6.6.2. AT02 - ACD attempts by queue

[image: ./Pictures/image_rep_AT02.png]

The following metrics are extracted and broken down by queue:
	
N. of lost agent attempts (i.e. the agent was called but not responding)

	
The average ring time for lost attempts

	
The total ringing time for lost calls

	
The number of taken agent attempts (i.e. calls answered)

	
The average ring duration for taken calls

	
The total ring time for taken calls

	Available since
	1.6.0

	Default page
	Distrib.

	Shortcut code
	AT02

	XML-RPC code
	DistrDO.AcdByQueue

	Parameters
	-

	See also
	

6.6.3. AT03 - ACD attempts by terminal

[image: ./Pictures/image_rep_AT03.png]

This graph breaks down agent attempts by the agent that was called. The following pieces
of information are extracted for each agent:
	
N. of lost agent attempts (i.e. the agent was called but not responding)

	
The average ring time for lost attempts

	
The total ringing time for lost calls

	
The number of taken agent attempts (i.e. calls answered)

	
The average ring duration for taken calls

	
The total ring time for taken calls

	Available since
	1.6.0

	Default page
	Distrib.

	Shortcut code
	AT03

	XML-RPC code
	DistrDO.AcdByTerminals

	Parameters
	-

	See also
	

6.7. Historical reports - Call distribution by day

The call distribution report shows when calls were handled, when calls were lost and the
average wait times broken down by period.
All percentages are calculated on the call class they belong to, i.e. a 50% of
"Unanswered calls" on one day means that 50% of all unanswered calls for the
period happened during that day, not that 50% of calls were lost.
For each metrics, the total number of calls is shown, together with average, minimum and
maximum times. Graphs are plotted on the total number of calls broken down and
on the averages.
It is possible to change the interval in the Hourly graphs, so that you can have
reports break down calls e.g. by half-hours or hour quarters, by changing a
value in the QueueMetrics master configuration file.
6.7.1. DD01 - Answered call distribution per day

[image: ./Pictures/image_rep_DD01.png]

Taken calls are shown per specific day. Days with no events are not shown.
	Available since
	1.6.0

	Default page
	Call distribution, by day

	Shortcut code
	DD01

	XML-RPC code
	CallDistrDO.AnsDistrPerDay

	Parameters
	-

	See also
	

6.7.2. DD02 - Answered call wait time per day

[image: ./Pictures/image_rep_DD02.png]

The total numbers of call wait time for answered calls are plotted for each day.
	Available since
	1.6.0

	Default page
	Call distribution, by day

	Shortcut code
	DD02

	XML-RPC code
	CallDistrDO.AnsWaitPerDay

	Parameters
	-

	See also
	

6.7.3. DD03 - Unanswered call wait time per day

[image: ./Pictures/image_rep_DD03.png]

The total numbers of lost wait time for lost calls are plotted for each day.
	Available since
	1.6.0

	Default page
	Call distribution, by day

	Shortcut code
	DD03

	XML-RPC code
	CallDistrDO.UnansWaitPerDay

	Parameters
	-

	See also
	

6.7.4. DD04 - Sales per day

[image: ./Pictures/image_rep_DD04.png]

Sales and contacts are shown on a daily basis.
	Available since
	1.6.0

	Default page
	Call distribution, by day

	Shortcut code
	DD04

	XML-RPC code
	CallDistrDO.SalesPerDay

	Parameters
	-

	See also
	

6.7.5. DD05 - Schedule Adherence per day

[image: ./Pictures/image_rep_DD05.png]

The Schedule Adherence report shows the number of distinct agents that were
detected during the given period. This makes it possible to detect the number
of different people that had been working on a given moment.
	Available since
	1.6.0

	Default page
	Call distribution, by day

	Shortcut code
	DD05

	XML-RPC code
	CallDistrDO.StaffPerDay

	Parameters
	-

	See also
	

6.7.6. DD06 - Queue length per day

[image: ./Pictures/image_rep_DD06.png]

The Queue Length report shows the average length of the queue for each period, giving
minimums and maximums. The Steps computation shows how fast each queue progresses
during the period, expresses in steps per hour. Note: giving a meaning to the
Queue Length reports may be hard in the case of composite queues.
	Available since
	1.6.0

	Default page
	Call distribution, by day

	Shortcut code
	DD06

	XML-RPC code
	CallDistrDO.QPosPerDay

	Parameters
	-

	See also
	

6.7.7. DD07 - Inclusive SLA per day

[image: ./Pictures/image_rep_DD07.png]

The inclusive SLA corresponds to the Service Level
Agreement metrics shown on Section 4.6.2, “Service level agreement”, grouped by day.
	Available since
	1.6.0

	Default page
	Call distribution, by day

	Shortcut code
	DD07

	XML-RPC code
	CallDistrDO.InclSlaPerDay

	Parameters
	-

	See also
	

6.7.8. DD08 - Traffic Analysis by period - per day

[image: ./Pictures/image_rep_DD08.png]

This report shows aggregate inbound/outbound activity per day.
	
Date: the date, hour or day of week used for the report.

	
Avg agents: the average number of agents, as calculated by agents logged
 in for each period versus the total period.
 E.g. if an agent logs in at 10:00 and logs off at 11:30, and a second
 agent logs in at 10:15 and logs off at 11:00, the period for 10:00 to
 10:30 will show 1.5 available agents.

	
Avg calls/agent: number of INCOMING calls (answered+unanswered) per period versus
 average available agents

	
Service level: the SLA (see below), computed on INCOMING calls only

	
Unans: Lost calls (INCOMING only)

	
Unans short: Lost calls below X seconds (INCOMING only, as a percentage of
 all calls)

	
Avg out: number of OUTGOING calls (completed and lost) per period versus
 number of available agents

	
Out/in: ratio of outbound to inbound

	
Avg ans. Average answer time (for INCOMING only)

	
Avg talk time: Average talk time (for INCOMING only)

	
Max wait ans: Maximum answer time in period (for INCOMING only)

	
Max wait lost: Maximum wait time for lost calls in period (for INCOMING
 only)

	
Max duration: Maximum talk time in period (for INCOMING only)

	
Max duration OUT: Maximum talk time in period (for OUTGOING only)

	
N. offered: Total number of INCOMING calls

	
N Answered: Total number of answered INCOMING calls

	
N Answered out: Total number of answered OUTGOING calls

	
Min Agents: minimum number of agents logged on for the period

	
Max Agents: maximum number of agents logged on in the period

The Service Level is measured against a time period that is specidfied
in the default.secondsServiceLevel parameter (default is 20, as to
say "percentage of calls answered within 20 seconds").
Short calls are defined as being shorter than the default.shortCallsLimit
parameter - default is 5 seconds.
	Available since
	1.6.0.4

	Default page
	Call distribution, by day

	Shortcut code
	DD08

	XML-RPC code
	CallDistrDO.TrafficAnPerDay

	Parameters
	-

	See also
	DH08, DW08

6.8. Historical reports - Call distribution by hour

Events are shown on a 24-hour distribution. If this graph appears to be incorrect, you
have to run a "Custom report" setting the time zone accordingly (see Section 4.3, “Custom reports”).
6.8.1. DH01 - Answered call distribution per hour

[image: ./Pictures/image_rep_DH01.png]

The total numbers of call lengths for answered calls are plotted for each hourly
interval. The size of hourly intervals can be controlled by the default.hourly_slot configuration
property, making it possible to run this reports based on 30-minute, 20-minute
or 15-minute intervals.
	Available since
	1.6.0

	Default page
	Call distribution, by hour

	Shortcut code
	DH01

	XML-RPC code
	CallDistrDO.AnsDistrPerHr

	Parameters
	-

	See also
	

6.8.2. DH02 - Answered call wait time per hour

[image: ./Pictures/image_rep_DH02.png]

The total numbers of call wait time for answered calls are plotted for each hourly
interval. The size of hourly intervals can be controlled by the default.hourly_slot configuration
property, making it possible to run this reports based on 30-minute, 20-minute
or 15-minute intervals.
	Available since
	1.6.0

	Default page
	Call distribution, by hour

	Shortcut code
	DH02

	XML-RPC code
	CallDistrDO.AnsWaitPerHr

	Parameters
	-

	See also
	

6.8.3. DH03 - Unanswered call wait time per hour

[image: ./Pictures/image_rep_DH03.png]

The total numbers of call lengths for unanswered calls are plotted for each hourly
interval. The size of hourly intervals can be controlled by the default.hourly_slot configuration
property, making it possible to run this reports based on 30-minute, 20-minute
or 15-minute intervals.
	Available since
	1.6.0

	Default page
	Call distribution, by hour

	Shortcut code
	DH03

	XML-RPC code
	CallDistrDO.UnansWaitPerHr

	Parameters
	-

	See also
	

6.8.4. DH04 - Sales per hour

[image: ./Pictures/image_rep_DH04.png]

The total numbers sales and contacts, are plotted for each hourly
interval. The size of hourly intervals can be controlled by the default.hourly_slot configuration
property, making it possible to run this reports based on 30-minute, 20-minute
or 15-minute intervals.
	Available since
	1.6.0

	Default page
	Call distribution, by hour

	Shortcut code
	DH04

	XML-RPC code
	CallDistrDO.SalesPerHr

	Parameters
	-

	See also
	

6.8.5. DH05 - Schedule Adherence per hour

[image: ./Pictures/image_rep_DH05.png]

The Schedule Adherence report shows the number of distinct agents that were
detected during the given period. This makes it possible to detect the number
of different people that had been working on a given moment.
	Available since
	1.6.0

	Default page
	Call distribution, by hour

	Shortcut code
	DH05

	XML-RPC code
	CallDistrDO.StaffPerHr

	Parameters
	-

	See also
	

6.8.6. DH06 - Queue length per hour

[image: ./Pictures/image_rep_DH06.png]

The Queue Length report shows the average length of the queue for each period, giving
minimums and maximums. The Steps computation shows how fast each queue progresses
during the period, expresses in steps per hour. Note: giving a meaning to the
Queue Length reports may be hard in the case of composite queues.
	Available since
	1.6.0

	Default page
	Call distribution, by hour

	Shortcut code
	DH06

	XML-RPC code
	CallDistrDO.QPosPerHr

	Parameters
	-

	See also
	

6.8.7. DH07 - Inclusive SLA per hour

[image: ./Pictures/image_rep_DH07.png]

The inclusive SLA corresponds to the Service Level
Agreement metrics shown on Section 4.6.2, “Service level agreement”, grouped each hour.
	Available since
	1.6.0

	Default page
	Call distribution, by hour

	Shortcut code
	DH07

	XML-RPC code
	CallDistrDO.InclSlaPerHr

	Parameters
	-

	See also
	

6.8.8. DH08 - Traffic Analysis by period - per hour

[image: ./Pictures/image_rep_DH08.png]

Distribution of calls and agent availability per hour (or
interval you specified). The whole 24h are mapped out for ease of
comparison.
For a complete description of parameters,
see DD08 - Traffic Analysis by period - per day
Section 6.7.8, “DD08 - Traffic Analysis by period - per day”
	Available since
	1.6.0.4

	Default page
	Call distribution, by hour

	Shortcut code
	DH08

	XML-RPC code
	CallDistrDO.TrafficAnPerHr

	Parameters
	-

	See also
	DD08, DW08

6.9. Historical reports - Call distribution by day of week

This report shows the weekly behaviour of your queues. The longer the analysis period, the more
significant its results will be.
6.9.1. DW01 - Answered call distribution per day of week

[image: ./Pictures/image_rep_DW01.png]

The total numbers of call lengths for answered calls are plotted for each day of the week.
	Available since
	1.6.0

	Default page
	Call distribution, by day of week

	Shortcut code
	DW01

	XML-RPC code
	CallDistrDO.AnsDistrPerDOW

	Parameters
	-

	See also
	

6.9.2. DW02 - Answered call wait time per day of week

[image: ./Pictures/image_rep_DW02.png]

The total numbers of call wait time for answered calls are plotted for each day of the week.
	Available since
	1.6.0

	Default page
	Call distribution, by day of week

	Shortcut code
	DW02

	XML-RPC code
	CallDistrDO.AnsWaitPerDOW

	Parameters
	-

	See also
	

6.9.3. DW03 - Unanswered call wait time per day of week

[image: ./Pictures/image_rep_DW03.png]

The total numbers of call wait time for unanswered calls are plotted for each day of the week.
	Available since
	1.6.0

	Default page
	Call distribution, by day of week

	Shortcut code
	DW03

	XML-RPC code
	CallDistrDO.UnansWaitPerDOW

	Parameters
	-

	See also
	

6.9.4. DW04 - Sales per day of week

[image: ./Pictures/image_rep_DW04.png]

The total numbers sales and contacts, are plotted for each day of the week.
	Available since
	1.6.0

	Default page
	Call distribution, by day of week

	Shortcut code
	DW04

	XML-RPC code
	CallDistrDO.SalesPerDOW

	Parameters
	-

	See also
	

6.9.5. DW05 - Schedule Adherence per day of week

[image: ./Pictures/image_rep_DW05.png]

The Schedule Adherence report shows the number of distinct agents that were
detected during the given period. This makes it possible to detect the number
of different people that had been working on a given moment.
	Available since
	1.6.0

	Default page
	Call distribution, by day of week

	Shortcut code
	DW05

	XML-RPC code
	CallDistrDO.StaffPerDOW

	Parameters
	-

	See also
	

6.9.6. DW06 - Queue length per day of week

[image: ./Pictures/image_rep_DW06.png]

The Queue Length report shows the average length of the queue for each period, giving
minimums and maximums. The Steps computation shows how fast each queue progresses
during the period, expresses in steps per hour. Note: giving a meaning to the
Queue Length reports may be hard in the case of composite queues.
	Available since
	1.6.0

	Default page
	Call distribution, by day of week

	Shortcut code
	DW06

	XML-RPC code
	CallDistrDO.QPosPerDOW

	Parameters
	-

	See also
	

6.9.7. DW07 - Inclusive SLA per day of week

[image: ./Pictures/image_rep_DW07.png]

The inclusive SLA corresponds to the Service Level
Agreement metrics shown on Section 4.6.2, “Service level agreement”, grouped for each day of week.
	Available since
	1.6.0

	Default page
	Call distribution, by day of week

	Shortcut code
	DW07

	XML-RPC code
	CallDistrDO.InclSlaPerDOW

	Parameters
	-

	See also
	

6.9.8. DW08 - Traffic Analysis by period - per day of week

[image: ./Pictures/image_rep_DW08.png]

Distribution of calls and agent availability per day of week.
For a complete description of parameters,
see DD08 - Traffic Analysis by period - per day
Section 6.7.8, “DD08 - Traffic Analysis by period - per day”
	Available since
	1.6.0.4

	Default page
	Call distribution, by day of week

	Shortcut code
	DW08

	XML-RPC code
	CallDistrDO.TrafficAnPerDOW

	Parameters
	-

	See also
	DD08, DH08

6.10. Historical reports - Agents and Sessions

Agent activity refers to the behaviour of Asterisk defined agents. If you connect you
queues straight to telephone terminals, this section will always be empty.
Each agent may be flagged as being a member of four priority groups:
	
Main: the agents usually answering the queue

	
Spill: the agents answering the queue if all "Main" agents are busy or unavailable

	
Wrap: the agents answering the queue if all "Main" and "Spill" agents are busy or unavailable

	
Undefined: this agent is not a member of any priority group for this queue

This feature is useful if priority groups are used in the queue configuration. If
they are not used, just assign all agents to "Main" for each queue.
If an unknown agent appears on a queue, it will be marked as "Undefined", written in red.
Agent names are written in blue and are clickable, if you click on them in any of the
graphs, you will be lead to a popup that detail the logon and pause history for that agent.
As a default, QueueMetrics will show and count an agent session if and only if the
agent handled at least one call during this session. This may not be what you
want when you use pause codes - an agent may log on and immediately go on pause
to do some back-end activities. If this is the case, you should set the
configuration option default.useRawAgentSessions to true to see all agent sessions.
6.10.1. AG01 - Agent session detail

[image: ./Pictures/image_rep_AG01.png]

This report shows:
	
The number of available agents in the considered period

	
The average agent time availability

	
The minumum agent time availability

	
The maximum agent time availability

	
The cumulated agents time availability

	Available since
	1.6.0

	Default page
	Agents and Sessions

	Shortcut code
	AG01

	XML-RPC code
	AgentsDO.ReportAgents

	Parameters
	-

	See also
	

6.10.2. AG02 - Session and pause durations

[image: ./Pictures/image_rep_AG02.png]

This report shows:
	
The number of sessions for each available agent

	
The number of pauses for each available agent

	
The average pause time

	
The percentage between the pause time and the availability time for each agent

	
The number of pauses for each session, for each available agent

	Available since
	1.6.0

	Default page
	Agents and Sessions

	Shortcut code
	AG02

	XML-RPC code
	AgentsDO.SessionPauseDur

	Parameters
	-

	See also
	

6.10.3. AG03 - Agent availability (for all the queues they are member of)

[image: ./Pictures/image_rep_AG03.png]

This report shows:
	
The agent available time

	
The total billable and not billable pause times

In the latest release a new column has been added (Paused on Conversation), which displays occupancy values.
	Available since
	1.6.0

	Default page
	Agents and Sessions

	Shortcut code
	AG03

	XML-RPC code
	AgentsDO.AgentAvail

	Parameters
	-

	See also
	

6.10.4. AG04 - Answered calls (for selected queues)

[image: ./Pictures/image_rep_AG04.png]

This report shows:
	
The number of answered calls for each agent

	
The cumulated call time for each agent

	
The average call time for each agent

	
The average wait time for each call taken

	
The percentage of taken calls, related to the total queue calls, for each agent

	Available since
	1.6.0

	Default page
	Agents and Sessions

	Shortcut code
	AG04

	XML-RPC code
	AgentsDO.AnsCallsQueues

	Parameters
	-

	See also
	

6.10.5. AG05 - Answered calls by custom group

[image: ./Pictures/image_rep_AG05.png]

This report shows:
	
The number of answered calls for each defined agent group

	
The cumulated call time for each defined agent group

	
The average call time for each defined agent group

	
The percentage of taken calls, related to the total queue calls, for each defined agent group

The report displays separately the following cases:
	
Agents that are known to QueueMetrics but have no custom group, are
 counted under the group "-"

	
Agents that are not known to QueueMetrics but found in the analysis
 are counted under "Undefined".

	Available since
	1.6.0

	Default page
	Agents and Sessions

	Shortcut code
	AG05

	XML-RPC code
	AgentsDO.AnsCallsCG

	Parameters
	-

	See also
	

6.10.6. AG06 - Answered calls by location

[image: ./Pictures/image_rep_AG06.png]

This report shows:
	
The number of answered calls for each defined location

	
The cumulated call time for each defined location

	
The average call time for each defined location

	
The average wait time for each defined location

	
The percentage of taken calls, related to the total queue calls, for each defined location

	Available since
	1.6.0

	Default page
	Agents and Sessions

	Shortcut code
	AG06

	XML-RPC code
	AgentsDO.AnsCallsLocation

	Parameters
	-

	See also
	

6.10.7. AG07 - Answered calls by service group

[image: ./Pictures/image_rep_AG07.png]

This report shows:
	
The number of answered calls for each defined service group

	
The cumulated call time for each defined service group

	
The average call time for each defined service group

	
The percentage of taken calls, related to the total queue calls, for each defined service group

	Available since
	1.6.0

	Default page
	Agents and Sessions

	Shortcut code
	AG07

	XML-RPC code
	AgentsDO.AnsCallsSG

	Parameters
	-

	See also
	

6.10.8. AG08 - Agent Performance by ACD Group

[image: ./Pictures/image_rep_AG08.png]

One entry is presented for each agent session. What makes this report
different from most is that inbound and outbound activity for the
agent is aggregated.
Items are computed as:
	
Level: the agent level this agent belongs to

	
Agent: agent name (if present) or Asterisk internal code if unknown.
 By clicking on it, the session details open.

	
Login: Session login time

	
Duration: Session duration

	
N.calls in: Number of calls taken for this queue(s)

	
N calls out: Number of calls outbound made for these campaign(s)

	
Tot calls: calls in + calls out

	
Average duration IN

	
Average duration OUT

	
Average duration for all (weighted)

	
Available: precentage of idle time

	
On call IN: percentage of time on call inbound

	
On call OUT: percentage of time on call outbound

	
Pause Billable: percentage of time on a pause code marked as billable

	
Pause Unbillable: percentage of time on a pause code marked as unbillable,
 or not specified, or unknown. (a.k.a. Clerical time)

	Available since
	1.6.0.4

	Default page
	Agents and Sessions

	Shortcut code
	AG08

	XML-RPC code
	AgentsDO.PerformanceAcdGroups

	Parameters
	-

	See also
	

6.10.9. AG09 - Agent Occupancy Report

[image: ./Pictures/image_rep_AG09.png]

The report details the occupancy rate for each and all agents in the current analysis.
	
The Agent column contains the decoded name, level and current group of
 the agent (if defined, expressed as an icon like elsewhere in QM).
 By clicking on the agent name, it is possible to open a popup
 with the session details for that agent.

	
Total session time is the sum of the duration of all sessions
 in the current analysis, from start to end.

	
Pause Billable is the total time on Billable pauses, for all sessions considered.

	
Pause Non Billable is the total time on Non-Billable pauses, for all sessions considered.

	
Total pause time is the sum of all pauses for all sessions considered.

	
Total talk time is the sum of all time that the specified agent
 spent in conversation during the sessions considered.

	
Occupancy is computed as: Talk time / (Total session ï¿½ Total Pause) and
 expressed as a percentage, as per the numeric examples show in the table above.

In the latest release a new column has been added (Paused Conversation) which is subtracted from the total pauses time; this way Occupancy will never be able to be over 100%.
The first line is labeled "All agents" and is computed according to the following rules:
	
Total session time, Pause billable, Pause non billable, Pause wrap,
 Total pause, Total talk time are computed as sums of the rest of data in each column

	
Occupancy is computed as: Sum talk time / (Sum Total session ï¿½ Sum Total Pause)

	Available since
	1.6.2.4

	Default page
	Agents and Sessions

	Shortcut code
	AG09

	XML-RPC code
	AgentsDO.AgentOccupancy

	Parameters
	-

	See also
	

6.10.10. AG10 - Agent Session Time by Hour

[image: ./Pictures/image_rep_AG10.png]

The report details the total presence time of each agent over the 24h for which you are running the current analysis.
	
The Agent column contains the agent’s decoded name, level and current group
 (if defined, expressed as an icon like elsewhere in QM).

	
Total time is the sum of the duration of all sessions included
 in the current analysis, from start to end.

	
One or more columns are present for each hour’s timeframe where total session information is present

	Available since
	1.7.2

	Default page
	Agents and Sessions

	Shortcut code
	AG10

	XML-RPC code
	AgentsDO.AgentBillableTimeByHour

	Parameters
	-

	See also
	

6.10.11. AG11 - Agent Payable Time by Hour

[image: ./Pictures/image_rep_AG11.png]

The report details the payable presence time of each agent over the 24h for which you are running the current analysis.
	
The Agent column contains the agent’s decoded name, level and current group (if defined, expressed as an icon like elsewhere in QM).

	
Total time is the sum of the duration of payable session time
 within the current analysis, from start to end.

	
One or more columns are present for each hour’s timeframe where payable session information is present

	Available since
	1.7.2

	Default page
	Agents and Sessions

	Shortcut code
	AG11

	XML-RPC code
	AgentsDO.AgentPayableTimeByHour

	Parameters
	-

	See also
	

6.10.12. AG12 - Agent Billable Time by Hour

[image: ./Pictures/image_rep_AG12.png]

The report details the billable presence time of each agent over the 24h for which you are running the current analysis.
	
The Agent column contains the agent’s decoded name, level and current group (if defined, expressed as an icon like elsewhere in QM).

	
Total time is the sum of the duration of billable session time
 within the current analysis, from start to end.

	
One or more columns are present for each hour’s timeframe where billable session information is present

	Available since
	1.7.2

	Default page
	Agents and Sessions

	Shortcut code
	AG12

	XML-RPC code
	AgentsDO.AgentBillableTimeByHour

	Parameters
	-

	See also
	

6.10.13. AG15 - Agents by Hour

[image: ./Pictures/image_rep_AG15.png]

The report details the number of agents available on the selected queues each hour for each day in the report.
	
The first column (Day) reports the date who the line is referred to

	
The next 24 columns report the number of agents found for at least one second in the associated hour.
 Numbers are reported black if the timeband has been covered completely by the agents, are reported red if at least
 one agent is not present for the whole hour. In this case, by flying over the red number the user can have an idea
 on what’s the coverage percentage for the timeband. The coverage is counted as the sum of periods, in seconds, the
 agents cumulated in that timeband, divided by 3600 seconds.

	
The last column reports the agents seen, for at least one second, during the day

	Available since
	14.10.5-938

	Default page
	Agents and Sessions

	Shortcut code
	AG15

	XML-RPC code
	AgentsDO.AgentByHour

	Parameters
	-

	See also
	

6.11. Historical reports - Details of agent sessions and pauses

6.11.1. AD01 - Detail of agent sessions

[image: ./Pictures/image_rep_AD01.png]

For each agent session, the start and end times are recorded, together with the total
duration in seconds.
If the agent logs on via the call back function, the designated call back extension is
shown.
The number of pauses and the total pause time in seconds is shown.
The "Srv" column tells you on which server an agent was working in case you set up a
cluster of Asterisk servers.
It is possible to sort the table for each title, in either descending and ascending
order. To do this, click once on the desired title for descending sort, and
twice for ascending sort. Once the table is sorted, an arrow symbol will appear close to the title,
so you know on which column it was
sorted last. As the sorting is done on the client machine, it may take a while
with very large tables.
	Available since
	1.6.0

	Default page
	Details of Agent sessions and pauses

	Shortcut code
	AD01

	XML-RPC code
	DetailsDO.AgentSessions

	Parameters
	-

	See also
	

6.11.2. AD02 - Detail of agent pauses

[image: ./Pictures/image_rep_AD02.png]

This table shows the specific pauses that each agent took and the pause code that was
entered for each pause. It also shows whether the pause taken was considered to
be billable or non-billable.
	Available since
	1.6.0

	Default page
	Details of Agent sessions and pauses

	Shortcut code
	AD02

	XML-RPC code
	DetailsDO.AgentPauses

	Parameters
	-

	See also
	

6.11.3. Popup of agent activity

[image: ./Pictures/popup_agent.png]

This is not a normal data block but it is the popup that is displayed
whenever you click on an agent’s name.
	
The top table reports session, pause, billable and payable time

	
The bottom table shows the details of all agent sessions, with a break-up
 of all pauses that were made during that session. For each pause with a
 known pause code, their billable-payable status is displayed:

	
BP: Pause is Billable and Payable

	
BNP: Pause is Billable but not payable (be careful!)

	
NBP: Pause is not billable but Payable

	
NBNP: Pause is neither billable nor payable

In the latest release a new "Conversation" column has been added on, to the right of the "On Pause" column, which displays the pause time there may have been while actually in conversation.
You can close the popup by clicking on the Close button.

6.12. Historical reports - Call outcomes

If your agents are entering Pause codes or Call outcomes, the "Outcomes" tab will let
you report on the information they just entered.
6.12.1. OU01 - Outcomes

[image: ./Pictures/image_rep_OU01.png]

This report shows:
	
How much billable time there has been on this system, broken down by ACD/call time ("agent available
 time") and billable activities (agent on pause)

	
The total non billable time (e.g. lunch, breaks)

	
The total number of Contacts, Qualified Contacts and Sales, as defined by call outcome codes

	
The Sales per Hour (SPH), Qualified Contacts per hour (QCPH) and Contacts per Hour (CPH) ratios

	
The Conversion index, that is the percentage of sales over the total number of sales and contacts.

	Available since
	1.6.0

	Default page
	Call outcomes

	Shortcut code
	OU01

	XML-RPC code
	OutcomesDO.GeneralRep

	Parameters
	-

	See also
	

6.12.2. OU02 - Call results, by outcomes

[image: ./Pictures/image_rep_OU02.png]

This report shows:
	
The number of total calls grouped by outcome

	
The number of answered calls grouped by outcome

	
The number of unanswered calls grouped by outcome

	
The percentage of calls related to each outcome

	Available since
	1.6.0

	Default page
	Call outcomes

	Shortcut code
	OU02

	XML-RPC code
	OutcomesDO.CallResByOutcome

	Parameters
	-

	See also
	

6.12.3. OU03 - Billable activities

[image: ./Pictures/image_rep_OU03.png]

In this report you can find details explaining Billable
activities, with average, minimum and maximum session durations, and a
percentage on all activities of the same kind.
	Available since
	1.6.0

	Default page
	Call outcomes

	Shortcut code
	OU03

	XML-RPC code
	OutcomesDO.ActivBillable

	Parameters
	-

	See also
	

6.12.4. OU04 - Non billable activities

[image: ./Pictures/image_rep_OU04.png]

In this report you can find details explaining Non billable
activities, with average, minimum and maximum session durations, and a
percentage on all activities of the same kind.
	Available since
	1.6.0

	Default page
	Call outcomes

	Shortcut code
	OU04

	XML-RPC code
	OutcomesDO.ActivNotBillable

	Parameters
	-

	See also
	

6.12.5. OU05 - Detailed agent report

[image: ./Pictures/image_rep_OU05.png]

The Detailed Agent Report will show, for each agent:
	
The Available (ACD) time, as an absolute value and a percentage of its total time logged on

	
The Billable time, as an absolute value and a percentage of its total time logged on

	
The Non-Billable time, as an absolute value and a percentage of its total time logged on

	
The number of Sales And Contacts the agent had (if a sale is counted a s both a Sale
 and a Contact, it’s counted only once as a Sale)

	
The Sales per Hour (SPH) and Contacts per Hour (CPH) ratios for this agent

	
The Conversion ratio, that is the percentage of sales over the total number of sales and contacts.

	Available since
	1.6.0

	Default page
	Call outcomes

	Shortcut code
	OU05

	XML-RPC code
	OutcomesDO.AgentReportDetailed

	Parameters
	-

	See also
	

6.12.6. OU06 - Outcomes per agent

[image: ./Pictures/image_rep_OU06.png]

This data block displays all the status codes for each call handled by each agent
within the current reporting selection.
If a call has no associated status code, then it is counted under a special status code called "-".
The columns show:
	
The agent name. As an agent might have multiple status codes, the agent name will appear multiple times. If the agent belongs to an agent group, the proper icon is displayed.

	
The call outcome, specified both as a code and a description (if it is present)

	
The type currently associated with the status code

	
The total number of calls for that agent under that status code

All columns are client-sortable.
	Available since
	13.04.3

	Default page
	Call outcomes

	Shortcut code
	OU06

	XML-RPC code
	OutcomesDO.AgentOutcomes

	Parameters
	-

	See also
	

6.13. Historical reports - IVR tracking

The following reports let you trrack information about IVR calls and goals.
A detailed explanation of IVR can be found in: Chapter 9, Tracking IVR data
6.13.1. IV01 - IVR Traversals

[image: ./Pictures/image_rep_IV01.png]

This block shows:
	
The IVR paths examined, in total (as the sum of all choices)

	
For each IVR path, the choices made on that path (prepended by #)

For each path, the following information is computed:
	
The number of calls traversing that path

	
The number of IVR goals reached immediately after that path (a goal can be a queue or
 an activity expressly earmarked as a goal)

	
The success rate, as the percentage of goals on all calls that entered the menu

	
The number of hang-ups made in that IVR menu

	
The attrition rate, as the number of hang-ups versus total number of calls

	Available since
	13.03

	Default page
	IVR

	Shortcut code
	IV01

	XML-RPC code
	IvrDO.IvrReport

	Parameters
	-

	See also
	

6.13.2. IV02 - IVR Timing

[image: ./Pictures/image_rep_IV02.png]

This block shows:
	
The IVR paths examined, in total (as the sum of all choices)

	
For each IVR path, the choices made on that path (prepended by #)

For each path, the following information is computed:
	
The number of calls traversing that path

	
The average traversal time for that IVR menu

	
The total traversal time (as the sum of all times for each call)

	
The maximum and minimum traversal times

	Available since
	13.03

	Default page
	IVR

	Shortcut code
	IV02

	XML-RPC code
	IvrDO.IvrTiming

	Parameters
	-

	See also
	

6.13.3. IV03 - IVR Goals

[image: ./Pictures/image_rep_IV03.png]

This block shows:
	
For each goal, all the paths that lead to that goal and their selection
 (the digit that was pressed in order to reach the goal)

	
The number of calls that reached each goal

	
The average, minimum and maximum traversal time to to reach the goal. The time is
 computed since the call is first tracked, and not only on the final IVR menu.

	Available since
	13.03

	Default page
	IVR

	Shortcut code
	IV03

	XML-RPC code
	IvrDO.IvrGoals

	Parameters
	-

	See also
	

6.14. Externally generated reports

QueueMetrics is able to fetch and display data blocks generated by external systems.
This may be used to enhance the standard QueueMetrics reports with data that
is handled outside of QueueMetrics - for example, data from a CRM application or order tracking systems
or anything else that makes sense to display together with queue data.
In order to use these blocks, you need to create external data providers that
will generate the data that QueueMetrics is to display. Details on how to do this
can be found in the XML-RPC Manual in the section called Dynamic blocks in QueueMetrics.
6.14.1. XS01 - Plain HTML

This data block includes a block of HTML right into the QueueMetrics report page.
For example, in order to include an HTML fragment generated by a server
located at http://server/page.php you would set:
url=http://server/page.php
in the data block’s parameter field.
	Available since
	13.12

	Default page
	None

	Shortcut code
	XS01

	XML-RPC code
	ExtSourceDO.HTML

	Parameters
	url: The URL that points to the page generating HTML

	See also
	

6.14.2. XS02 - XML-RPC data source

This data block includes a formatted table of data into the QueueMetrics report page.
The data must be generated in a specified format by an XML-RPC server,
as described on the XML-RPC Manual.
	Available since
	13.12

	Default page
	None

	Shortcut code
	XS02

	XML-RPC code
	ExtSourceDO.XMLRPC

	Parameters
	url: The URL that points to the XML-RPC server

	See also
	XS01

6.14.3. XS03 - JSON data source

This data block includes a formatted table of data into the QueueMetrics report page.
The data must be generated in a given format by a JSON server,
as described on the XML-RPC Manual.
	Available since
	13.12

	Default page
	None

	Shortcut code
	XS03

	XML-RPC code
	ExtSourceDO.JSON

	Parameters
	url: The URL that points to the page generating a JSON document

	See also
	XS01

Chapter 7. The real-time status panel

The real time status panel can be accessed by clicking the "Start real-time monitoring"
label from the home page. It will show a page similar to the one below:
[image: ./Pictures/image060.png]

On the top of the page there is a control table showing the last update timestamp and other dropdown
selectors as specified below:
	
Reload: It defines the update period will be used to refresh the shown data

	
Recap: Shows or hides the table containing the summary of calls by queue

	
Calls: Shows or hides the Calls being processed table

	
Agents: Shows or hides the Agents currently logged in table

	
Queues: Shows all queues or only active queues

	
Agents: Toggle between all agents or members only agents

	
Location: If granted by user permissions, defines which location is shown

	
Group: Defines wich agent group is shown

	
Superv.: Filter out agents not supervised by current user

The page is able to auto-refresh in background at the period specified in the first dropdown but you can anyway force a faster reload by clicking the "Reload" button.
Next to the control table, there is the data section. Depending on the status of previously mentioned dropdown, three sections could be shown.
The first is a table showing a summary of all calls flowing through queues. Following that summary, there is a table showing which calls are currently handled by the queue system, then the agents logged in at the moment.
This page is invaluable because can tell you in a glimpse what’s happening in
the call center; it is meant to stay open in a window on the CC manager’s workstation
to have the exact feeling of what is going on at the moment.
On the sample page above, you can see three calls and four connected agents. Just like in the
main analysis, you can choose which queues you want to monitor to avoid being
overwhelmed by data.
You can also see that the current call environment has triggered a number of yellow and
red alarms, as specified in the queue definition. You can configure red an
yellow alarms for most numeric values that appear on screen - see the chapter Section 21.3.1, “Setting attention levels (Red and yellow alarms)”.
You can also set sounds linked to
yellow or red alarms, that will be played if a red or yellow alarm is present.
Since the release of QueueMetrics 12.04, this panel has an added feature, which is the "Add Member" button, that allows an administrator or supervisor to add an agent to a queue, as required. Users holding the RT_ADDMEMEBER key will be able to add agents directly from the Realtime page.
[image: ./Pictures/RT_AddMember_button.png]

	[image: [Tip]]	
	In order to change the default audio files, see "Appendix D: System Preferences". If you want to turn them off completely, just set them to blank.

7.1. Top status panel

The top status panel shows a quick status report for the current situation.
The first line shows information for all selected queues as a sum, while if there is
relevant information for a specified queue it is displayed in a separate line.
If an alarm is triggered for one of the numeric values displayed, the relevant
cell turns either yellow or red.
The displayed fields have the following meanings:
	
Queue: The name of the queue. Inbound queues are marked with the symbol
[image: ./Pictures/image025.png]
, while outbound queues use the symbol
[image: ./Pictures/image026.png]
.

	
N. agents: how many agents are logged on to the system, in total

	
Ready agents: how many agents are ready to take calls, i.e. are logged on and
 are not in conversation or on pause

	
On pause: how many agents are currently on pause

	
Unk: how many agents are currently in conversation, but are not currently known
 as member of this queue

	
Bsy: how many agents who are both members of the given queue and some other
 queue are currently busy because they are on call on the other queue.

	
N. Calls Waiting: how many inbound calls are currently waiting in the selected
 queue. Outbound queues never have any call waiting.

	
On phone inbound: how many agent are talking on the selected inbound queue

	
On phone outbound: how many agents are talking on an outbound queue

Please note that, as agents are not linked to a specific queue save for the moment they
are actually talking to a caller on the queue, the agent information is
computed for all agents on the Asterisk server and not for specific queues,
unless the "Members" option in the "Agents" dropdown is selected.

7.2. Calls being processed

A list of calls flowing through the selected queues is presented on the middle table. If
no call is present the table is displayed empty.
When a call is processed, the following fields are shown:
- Queue: the queue that is handling the call;
- Caller: The Caller*ID, if available;
- Entered: The date and time the call entered the queue system.
If the call is not answered yet, the "Waiting" field is displayed in red and is calculated according
to the current date and time of the server. Depending on what type of information is present in the database (ATTEMPTS or RINGNOANSWER),
is possibile to have information about the last agent not picking up the call or the actual ringing
agent’s phone. The default configuration works with a standard Asterisk configuration and lets able to
have RINGNOANSWER information. Please refer to Chapter 24, Configuring Asterisk for QueueMetrics for the how to configure
Asterisk generate ATTEMPTS information.
When a call is answered, the "Waiting" field tells the time that the caller had to answer;
the "Agent" field shows the agent (or terminal) the caller is talking to and
the "Duration", in red, is the current call duration.
If the call is ongoing and connected to an agent, moving the mouse on the wizard icon at the end of the line, some icons, like Call Monitor and VNC Monitor icons may be present. By clicking on one of these icons you activate the specified
monitoring (see below).
If the call is ongoing and you have the special grants to do so, a red scissor icon might
appear, moving the mouse on the wizard icon, to allow for brute-force call closure. See the section Closing ongoing calls for further details.
As soon as a call is completed or hung up, it exits the Calls panel.
This panel can be turned on or off through the "Calls" dropdown on the top of
the page.
The "MOH" field shows the amount of time a customer is on hold with music, during a call. If multiple HOLD instances took place during the call, this filed will show the total "on hold" time.
To implement this feature, it is necessary to have an Asterisk patch, which can be obtained by following this link:
https://reviewboard.asterisk.org/r/1778/
NOTE:
The link to this Asterisk patch is provided by the Copyright holders and Contributors as is and any fitness for a particular purpose is Disclaimed. In no event shall Loway be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including Loss of use, data, profits or business interruption) however caused (including negligence or otherwise), arising in any way from the use of this Asterisk patch.
[image: ./Pictures/music_on_hold.png]

The "Srv" column is used only in cluster-based environments to tell you on which server
the call is being handled.
The last field contains a "wand" that on mouse-over displays a drop-down menu which allows to perform the following actions:
[image: ./Pictures/RT_Wand_calls.png]

	
VNC: Monitor agents via a VNC remote session

	
IM: Begin an Instant Messaging session with an agent

	
QA: Access the QA Form for the specific call (must have the QA_TRACK key enabled)

	
Close: Close the call in the QM log, but not in Asterisk (must have the CLOSECALLS key enabled)

	
Hangup: Close the live call in the PBX (must have the RT_HANGUPCALL key enabled)

	
Transfer: Transfer the call to another extension (must have the RT_TRANSFERCALL key enabled).

	
Monitor now: Start a listen-in chanspy Asterisk session (must have the MON_AUDIO key enabled)

To have precise realtime reporting a perfect clock synchronization is required.
If your QM is on a different server, make sure the clocks are exactly aligned or you may see strange values
in all fields. The NTP protocol offers excellent clock synchronization
precision and is available on most operating systems.

7.3. Agents currently logged in

A list of available agents for all queues is displayed in this field. For each agent, the
name, last log on and extension, if logged in via call-back, is provided.
A graphical indication of the status of each agent is shown using a coloured dot, where the
following cases are possible:
	
Green dot: the agent is ready to take calls

	
Yellow dot: the agent is currently on a call

	
Red dot: the agent is currently on pause

This panel can be turned on or off through the "Agents" dropdown on the top of the page.
The Queue(s) field shows the queues an agent is logged on to. This is meaningful only for agents who log-in on a
queue-by-queue basis using the AddMember command in Asterisk. If an agent logs
on to all queues he’s enabled to work on, a small database
[image: ./Pictures/image062.png]
logo may be shown, telling the viewer that the agent is linked to queues through the Asterisk’s configuration.
As the queue_log file usually contains no information on what queue(s) an agent is a
member of, usually all agents are shown when they log on, no matter to what
queue they will work on. This might be a problem for larger call centres, so it
is possible to see only calls and log-ons of agents that are a member of the
current queue. Membership is set by clicking on the "Agents" button of the
queue settings page. Make sure your queue membership data is up-to-date before
clicking this button!
If the "All" option was selected in the "Agents" dropdown , all agents logged in on Asterisk
will be shown, no matter to which queue they belong. When "Members" is selected, instead, only agents defined for the selected queue will be displayed.
By turning on the property "realtime.show_incorrect_queue_sets", the Queues field will display each queue with a different color code:
	
in black: queues the agent is a known member of

	
in brown: queues the agent is currently working on but he’s not a known member of

	
as a down-arrow: queues the agent is a known member on but he’s not currently logged on to. In order to see the list of queues, fly over
 the down-arrow symbol with your cursor.

The On Pause field will contain the time the agent went on pause; if the agent is
using a pause code to mark the reason for going on pause, the decoded pause
code is shown as well. A switch can be used to show the pause start time either
as an absolute hour or a time increment.
The Last call and On queue fields show the start or disconnect time of the last call
the agent handled (which is latest) and on which queue the last call was. This
can be useful to diagnose queue strategy problems that lead to unfair call
distribution, or agents having problems with their telephones and therefore not
taking calls correctly.
The last field contains a "wand" that on mouse-over displays a drop-down menu which allows to perform the following actions:
[image: ./Pictures/RT_Wand.png]

	
VNC: Monitor agents via a VNC remote session

	
IM: Begin an Instant Messaging session with an agent

	
Remove Mamber: Remove an agent from a queue (must have the RT_REMOVEMEMBER key enabled)

	
Pause Agent: Put an agent in a Pause state (must have the RT_PAUSEAGENT key enabled)

	
Unpause Agent: Un-pause an agent so he/she is available to take calls (must have the RT_UNPAUSEAGENT key enabled)

	
Send Text Message: Send a text message to an agent (must have the RT_SENDTEXTAGENT key enabled). The SMS functionality works only with asterisk 10+ versions.

7.4. Using Locations

You can also assign each agent to al Location, i.e. a group of agents working together
that you want to monitor as an unit. They might be a supervisor’s team, or
people working in the same building, or maybe in the same location for big
multinational call-centres. This way you can avoid being cluttered with
information about all agents working on the selected queue(s)and only see those you are actually interested
in.
Note that when you filter by agents or locations you may see calls being queued and then
disappear. This happens because all calls that wait to be answered on a queue
are shown, but answered calls are shown only if the answering agents is a
member of your defined filter conditions.
Imagine you have two groups of agents, one working in NY and the other one in LA. You are
the supervisor of the NY group, so you are filtering by location. You see a
call entering your queue and then disappear. The reason why might be that it
was answered by someone in LA, so QueueMetrics filters it out for you.
It is also possible to have QM ask for a location to be selected in any case for Real-time reports. As locations can be
key-protected, this is a handy way to determine which agents can be seen by which
supervisors. In order to enable this feature, you must set the realtime.assignedLocationsOnly property.
When this is set:
	
When a user enters the real-time screen, the dash that means "Any location" is not shown anymore and the first location
 they have the grants to see is be selected.

	
If a user has no grants to see
 at least one location, an error message is raised and they are not able to
 enter the real-time screen

[image: ./Pictures/image064.png]

7.5. Unattended call and VNC monitoring

It is possible for you to set up both Unattended Call Monitoring and VNC Monitoring.
Unattended Call Monitoring makes it possible to listen to an ongoing call from an agent;
by clicking on the small telephone-shaped icon, that will appear moving the mouse under the wizard icon, a popup will be shown where you may enter your current extension or PSTN telephone number.
[image: ./Pictures/image066.png]

As soon as you confirm the entered data, your telephone will ring and you will start listening to the ongoing call between the selected agent an the caller.
In order to set up this behaviour, please see the section Section 24.8, “Listening to live calls: Unattended Call Monitoring”.
It is possible to use different PMs to handle different audio needs -
see Chapter 22, Listening to calls using Pluggable Modules (PM).
It is also possible to set up the system in order to allow the real-time monitoring of the
agent’s screen using VNC. If this feature is enabled, a small screen will
appear close to the agent’s name; by clicking on it, your selected VNC
application will be launched and you will be monitoring the agent’s screen.
In order to set up this behaviour, please see the section Section 24.9, “Enabling VNC Monitoring” of this manual.

7.6. Real-time performance considerations

Running a large set of real-time pages / wallboards may impose a significant burden on a QueueMetrics
system. But sometimes you have no choice. The best way to run them is to:
	
Use SQL or CLUSTER storage types

	
Set the beginning of the analysis to the minimum usable time. For example, QM usually runs the
 real-time report since the last midninght, but sometimes a sliding window of (say) 8 hours might be equally
 effective in your scenario and require a fraction of the load. You control this by setting
 the realtime.startHour property

	
Turn on row caching - this allows QM to keep cached and pre-processed copies of objects it needs to run
 the Real-time and Agents Page. This may offer a significant speed up, ofter by an order of magnitude,
 and will reduce database load. You turn on this feature by setting realtime.useRowCache to true.

	
Tune Java memory for maximum performance - see the Advanced Configuration manual.

7.7. The real-time live page

The real-time live page can be accessed by clicking on the "Live" tab next to the
"Realtime" tab.
[image: ./Pictures/image068.png]

This page is not built from the queue_log data as all other information reported by
QueueMetrics, but it' s read right from each Asterisk box’s Manager interface. So what you see in this page is the
status of each Asterisk box, as reported by itself.
This feature is still less developed than the Realtime page, but still can be pretty
useful.

7.8. The top panel

On the top panel, for each queue on each server, you will see the following pieces of
information:
	
Tot: the total number of agents available for this queue

	
Free: the number of free agents

	
Pause: the total number of agents on pause

	
Talking: the total numbers of agents who are in conversation at the moment

	
Other q.: the number of agents that are logged in to this queue and some other
 queue, and are at the moment busy on another queue.

	
Logoff: the number of possible agents that are defined for this queue but are not
 logged on at the moment.

	
Length: the current queue length, i.e. how many calls are waiting in line before
 being connected to an agent

	
Max wait: the current maximum wait time for this queue.

7.9. Calls being processed

In the calls panel you see the following pieces of information, sorted from oldest to
newest by call start-time:
	
Server: the server that is handling this call

	
Queue: the name of the queue

	
Caller-id: the caller-id of this call, if any

	
Wait: the wait time (if the call is not connected)

	
Talk: the total duration (if the call is connected)

	
Q.Pos: the queue position (if the call is waiting)

	
Agent: the agent handling this call, if connected

	
Entered: the time this call was queue

	
Status: the call status

The Wait and Talk times cannot be distinguished at the moment.

7.10. Agents currently logged in

In the agents panel you can see the following pieces of information:
	
Server: the server your agent is logged on to

	
Agent: the agent

	
Status: if the agent is free, paused or on call

	
Logon: the time this agent logged on

	
Queues: to which queues is this agent connected at the moment

7.11. Server status

The last panel details the status of each server making up the cluster. If a server is
not correctly set up, it will appear as KO.
	
Server: the server that QM is polling

	
Status: OK - the server answered correctly; KO - it was impossible to retrieve
 information from this server

	
Time: how much querying this server took. If this value goes up all of a sudden,
 your server is likely experiencing overload.

7.12. Enabling the real-time live page

To enable the real-time live page you must do the following:
	
Make sure that your users have the RTLIVE security key

	
Make sure you have a clustering set up and the manger interfaces are set correctly. You can even not use
 clustering for reporting, though the manager interfaces will be read
 through the cluster.*.manager
 properties.

	
Make sure that Asterisk has the manager API enabled, and that your IP address, login and password are
 correct. E.g. tcp:dial:bingo@10.10.3.100
 will tell QueueMetrics to connect to the manager port on server 10.10.3.100 and use the user dial with password bingo to log on.

7.13. Help! My Real-time and Live pages display different results!

In this case most likely the Live page is correct. This is due to the fact that
sometimes Asterisk will not log some events correctly, and so the status of the
call-center inferred from the queue_log file may end up not being correct.
If this happens to you:
	
Log agents off and on again

	
Check that Asterisk is correctly installed

	
Check that error queue exist (e.g. timeouts) log their status correctly

	
If you think that what QM shows on the Live page is wrong, you can get a trace of the dialog involved by
 setting the property manager.dump. See Appendix D, System preferences.

Chapter 8. The real-time agent page

QM lets each agent have his/her own page, where they can see the current flow of calls
they have just answered and launch external CRM web apps. Since release 14.0.6 QueueMetrics
includes a new real-time page based on movable resizable and draggable panels. Information on this page is
on Section 8.7, “The new Realtime Agents Page”.
This is quite useful, because the agent can:
	
see their own status, i.e. whether they’re logged on or they’ve been disconnected;

	
see their last calls, including information like Caller ID, duration and waiting times;

	
see from which queue the call is coming, even if they lost the announcement message;

	
launch external web apps - like CRM software - that might be automatically linked to the Caller-ID
 or other information input by the caller

	
read the messages broadcasted to him

	
start a new conversation calling a phone number

	
have a subset of AGAW information

	
track information about the current call on QA forms

Also, it is possible to use this page in order to:
	
Log the agent on and off to Asterisk and/or a specific queue

	
Pause and un-pause the agent, entering the pause activity code if needed

	
Set the outcome code for each call

To avoid excessive consumption of system resources on big centres, only the most recent
part of the log file is processed and so only a few calls are shown.
In order to use this feature, a user must be configured as having the same login as the
Asterisk agent string (e.g., "Agent/101") and it must hold the key AGENT. Our
suggestion is to use the same set of credentials the agent uses to login to the
Asterisk system.
When the agent logs on - you can try this by using the demo account Agent/101, password 999 -
s/he sees a reduced home page like the following one:
[image: ./Pictures/image070.png]

As of release 12.10 the Agent page includes a Home button that allows to get back to the above agent web page at any stage (no security key or property are required to enable this feature) and one or more reporting options selectable by queue, report type and durations.
	[image: [Note]]	
	Agents enabled to access to Icon Section 8.7, “The new Realtime Agents Page” and logging in to QueueMetrics starting from release 14.10.5 will be directed to their
realtime page instead of their home page. This feature could be disable by mean of a default configuration key set to the configuration.properties fille.
Please see Appendix D, System preferences for further details.

This block of reporting functions is made visible for agents by enabling the SSAREPORT key within the user configuration/administration page (Cfg Users tab), which can be reached by selecting the Edit users link form the main QueueMetrics administrator Home page. An agent can run a report based only on the queues and reports assigned to him/her. The agent does not have a Search button enabled, so s/he is not able to access any kind of Custom Reports. The reporting can be run directly from the agent web page.
See section Chapter 21, Editing QueueMetrics settings for further details.
By clicking on "Show inbound calls", the agent is led to the inbound calls page:
[image: ./Pictures/image072.png]

This page tells the agent that he’s logged on and shows the last calls he has handled.
This page lists also a subset of AGAW information related to the logged agent.
In this case we see that there is an ongoing conversation and many previous calls.
On top of the page a field tells the agent whether s/he is:
	
Logged on: ready and able to take or make calls;

	
Logged on queues: followed by the list of queues the agent is dynamically logged on through the Add Member button;

	
Logged off: the agent has voluntarily left or has forcibly been disconnected by the queue system;

	
On pause: the agent has asked for a pause from the queue system;

	
Undetermined: whether there is no relevant information to tell the agent status
 in the last part of the log file.

The fields the agent can find in the call list are as follows:
	
Entering at is the date and time the call entered the queue system;

	
Waiting is the waiting time before being connected to the agent;

	
Talking is the talking time for that call. If the call is ongoing, the time will
 be estimated and written in red.;

	
Caller ID is the call’s identification, if available;

	
Queue is the queue handling the call;

	
URL is a clickable link that opens a third party CRM app.
 The agent opens the third party CRM app by clicking on it, or
 QM can open it up automatically the first time the URL is presented.
 If the URL contains bracketed placeholder sequences, they are expanded (see below)

	
Status is whether the call is ongoing or terminated;

	
Transfer is the extension the call was transferred to (if any).

	
Outcome is the call outcome that the agent can set for this call. This must be set within a maximum timeframe of 30 minutes from the moment the call enters the queue; after this given period the call outcome cannot be added as the icon is no longer present.

	
QAForm This icon allows specific agents to access the QA form for the call, but only if such agent holds the QA_TRACK key.

[image: ./Pictures/b1519.png]

After the call list table, if enabled by configuration as explained in Section 21.19, “Configuring system preferences”,
a table lists the AGAW information related to the atomic queues the agent is working on. For more information about the
AGAW subsystem, please refer to Chapter 11, The Agent Awareness subsystem (AGAW).
To avoid hammering the QM server with excessive work, only the last piece of the log
is analyzed. This parameter can be fine tuned by the system administrator in
order to maximise usefulness without creating an excessive server load (see Section 21.19, “Configuring system preferences”).
Whenever an agent receives a call, s/he should press the "Reload" button on the page in
order to see the incoming call. If you use a SQL storage mode, you can enable Section 8.4, “Auto-refreshing the agent’s page: Active Polling”
in order to have the page reload automatically when a new call is detected.
The page reloads automatically every two minutes in order tomaintain the user logged on in QM.
Each time the call history changes, and if there is an URL associated to the call shown on top of the list,
a new window will automatically be opened pointing to the specifig URL. This feature could be disabled
modifying the value associated to the configuration key realtime.agent_autoopenurl as specified
in Section 21.19, “Configuring system preferences”.
URLs are passed to the Queue() command in Asterisk, or - if missing - they can defined in the
QueueMetrics queue configuration as a default. They can include a set of placeholders that are
expanded with the details of the call being handled, as in the following table.
	Placeholder 	Meaning
	[A]
	The agent’s numeric code, e.g. 101 for Agent/101

	[U]
	The call’s Asterisk UniqueId

	[S]
	The Server ID (for clusters)

	[Q]
	The name of the queue

	[T]
	The timestamp of the call

	[C]
	The caller-id, if present

	[D]
	The DNIS, if present

	[I]
	The IVR Path, if present

	[O]
	The outcome code, if present

	[P]
	The position in the queue, if present

	[M]
	The attempts, if present

	[TAG]
	The call tag, if present

	[F:x]
	If the call has a feature called x, the text of feature x; otherwise blank.

	[FX:x]
	If the call has a feature called x, it is set to 1; otherwise 0

	[V:x]
	If the call has a variable called x, the value of x; otherwise blank.

	[image: [Warning]]	
	If the URL is being recomputed with a different value, it will be reopened automatically.
 This may or may not be what you want.

8.1. Using the agent’s page to control advanced features

The buttons on the agent’s page can be used to log agents on and off, to dynamically add or remove them
to one or more queues, to dial a phone number, to pause and unpause them and set the call status. Each button could independently be enabled or disabled
changing the associated key value in the configuration. When pressed, each button will open up a pop-up window asking for details:
[image: ./Pictures/image074.png]

As of QM release 12.10 it is possible to set input validation for both the agent code and the extension. As an example, by setting the key realtime.agentRegexp=1\\d\\d you are defining that the agent code must start with a one and cannot be more than 3 digits, while by setting the key realtime.extensionRegexp=\\d\\d\\d\\0 you define that the agent extension must be four digits and must end with a zero. Please note that the backslash in the regexp has to be written as \\ in the configuration.properties file.
Once the user clicks on Run, the command will be sent to the Asterisk server and the page will be reloaded. It is possible
that on very busy machines the commands may be delayed a few seconds, so that
it is necessary to reload the page manually in order to check that the command
has run successfully.
Please note that for this to work it is necessary that Asterisk has been configured to manage Agent actions - it will
NOT work on an Asterisk server that’s not been specifically configured to work with it!
See section Section 24.10, “Enabling Agent’s page actions” in order to set up this feature.
If you want to have agents logging on, it is mandatory that the underlying Asterisk agents
are defined without a password.

8.2. Self-service agent reporting

It is now possible to allow agents to run specific reports directly from the agent page. These new features are available as of QueueMetrics version 12.10 and are already enabled for the included sample agents. In order to configure other agents having the same functionalities available, the following steps need to be implemented:
	
Assign a queue (or a set of queues) to the agent

	
Assign a new report to the agent

	
Assign the SSAREPORT key to the agent

	
To assign a queue to an agent, select Edit queues from the Home page, select the Assign reports to agents icon, select the check-box next to the chosen agent. Save to confirm.

	
To assign a report to the agent, select Edit reports from the Home page, select the Assign reports to agents icon, select the check-box next to the chosen agent. Save to confirm.

	
To assign the SSAREPORT key to the agent, select Edit users, select the pencil icon, add the key to the User keys field. Alternatively, it is possible to assign the SSAREPORT key to all agents by editing the agents class by selecting Edit users from the Home page, select the Show classes button, select the pencil icon of the Agents class and add the SSAREPORT key in the Keys field.

This new block of reporting functions is made visible for agents by enabling the SSAREPORT key within the user configuration/administration page (Cfg Users tab), which can be reached by selecting the Edit users link form the main QueueMetrics administrator Home page.
An agent can run a report based only on the queues and reports assigned to him/her. To assign queues to an agent you have to select the Edit queues link from the QueueMetrics administrator Home page and select the Assign reports to agents icon next to the queue you want to assign. This will take you to the page where you can simply assign the queue to the chosen agents.
[image: ./Pictures/assign_q_to_agent.png]

When assigning reports, the same criteria applies as assigning queues, where we access the report configuration page from the Edit reports link on the administrator Home page. Selecting the Assign reports to agents icon takes to the page where you assign the selected report to each agent.
An administrator can also assign the maximum amount of time that an agent can have available, when viewing historical reports from the agent web page. The key default.ssarMaxReportPeriod is defined within the configuration.properties file. If this key is not present within this file, then the default time is 15 (days).
[image: ./Pictures/agent_report.png]

When an agent runs a report, the agent does not have a Search button enabled, so s/he is not able to access any kind of Custom Reports.

8.3. Real time agent’s page customizable buttons

It’s possibile to have a maximum of four buttons fully customizable in the realtime agent’s page. These buttons
could be used to:
	
Open a new browser page

	
Dial a predefined extension.

By changing some configuration settings, each button can be:
	
Enabled/Disabled globally

	
Have a custom label assigned

	
Have an URL specified. If [A] or [U] are specified inside the URL, QueueMetrics
 will expand it with the numeric Agent code or with the Unique Call ID
 of the last call processed (if present, otherwise Unspecified will be used).

	
As an alternative to the URL, have two Asterisk call legs specified that will be
 dialed when the button is pressed. The placeholder [A] is exanded - if present -
 with the numeric Agent code.

The image below shows the buttons in action.
[image: ./Pictures/image248.png]

To have more details on the configuration settings involved, please read the Appendix D, System preferences.
In the following example, the first two buttons will open an external web page; the third one is
disabled and the fourth could be used to start a call to the secretary.
When a button is associated to a dial action, when pressed, it will be highlight in yellow as shown in the picture below.
[image: ./Pictures/image249.png]

Please note that buttons will be hidden if there is not at least one button enabled.
To have more details on the configuration key details, please read Appendix D, System preferences.

8.4. Auto-refreshing the agent’s page: Active Polling

In default mode, QueueMetrics asks for an agent to push the Reload button on the agent’s page
in order to refresh the page. This was needed to avoid hammering the server with hundreds of requests at once.
Since QueueMetrics 13.04, it is possible to have the agent page reload automatically when running
the Row Cache; and you can therefore have a screen-pop that is completely automated. The idea is that
a very lightweight transaction is run to check whether there is new data that might involve the agent;
if there is, a page refresh is performed an all data is recomputed.
The following preferences must be set in configuration.properties:
realtime.useActivePolling=true
realtime.ajaxPollingDelay=5
realtime.useRowCache=true
realtime.agent_autoopenurl=true
As this setting depends on the Row Cache - see The Row Cache
Section 21.21.4, “RAM cache inspector” - is is mandatory that you
use a SQL-based storage type.
	[image: [Tip]]	
	to confirm that Active Polling is working, look at the date and time value on the bottom right corner
 of the agent’s page. When Active Polling is working, you should see it change every few seconds.

8.5. Gathering call information through agent-side QA forms

QA forms - described in detail in Chapter 13, Advanced tracking of agent and grader performance - can be used on the agent’s page in order
to gather generic information about the current call. They may act as a kind
of embedded database of calls that is accessible for reporting within QM itself.
In order to turn on the filling of QA forms by agents, you need to:
	
Make sure your agents hold the QA_TRACK security key. You might consider
 adding it to the Agents class.

	
Create special QA forms to be used by agents. You can use security keys to
 make sure that your agents have access only to the forms they are supposed
 to see, versus forms used for "proper" QA tracking by QA specialists

	
Create form items made of multiple-selection or "Yes/No" questions

	
In agent’s forms, all or most questions will be non-scoring, as you are gathering
 information and not evaluating an agent’s behavior

	
QA forms can have multiple sections that turn on or off based on the answers to
 other questions. Questions can also be made optional.

	
You can associate free-text comments to QA items by clicking on the
 pencil icon on the right-hand side of the question

8.6. Agents Page performance considerations

Running a large set of agent pages may impose a significant burden on a QueueMetrics
system. The best way to run them is to:
	
Use SQL or CLUSTER storage types

	
Set the lookback period to the minimum usable period - you control this by setting
 the realtime.max_bytes_agent property to the number of seconds it must look back. For example,
 if your agent shifts are of 6 hours, you could use a number between 22000 and 25000.

	
Turn on row caching - this allows QM to keep cached and pre-processed copies of objects it needs to run
 the Real-time and Agents Page. This may offer a significant speed up, ofter by an order of magnitude,
 and will reduce database load. You turn on this feature by setting realtime.useRowCache to true.

	
If you use Active Polling, try and increase the polling delay.

	
Tune Java memory for maximum performance - see the Advanced Configuration manual.

	
Consider AGAW as an alternative to running thousands of agents pages at once.

8.7. The new Realtime Agents Page

Since release 14.0.6 QueueMetrics includes a new real-time page based on movable resizable and draggable panels.
The new page is available for agents holding the key NEWAGENTPAGE.
Using the new page has several advantages:
	
Draggable and resizable panels for each main activity. This ensures only the options used by the agent are visible on the page.

	
Integrated soft-phone, WebRTC enabled (currently working only on Chrome browsers and Asterisk11+Webrtc2sip or with Asterisk12) allows agents to receive and generate calls without an external SIP phone.

	
Whole integration with an external CRM and/or other custom web pages.

	
Easy login/logout and pause/unpause procedure.

	
Per agent layout customization with sessions persistence.

	
Keyboard shortcuts help to open/close most of the panels.

The first time an agent enters the real-time page he sees something similar to the below picture:
[image: ./Pictures/image318.png]

At the top of the page there is a menu bar. On the right side there is an icon representing a letterbox.
By clicking on this icon the agent can show/hide a panel containing the most recent received messages. If the panel is not
visible and the agent receives a new message, the icon starts blinking. The message panel could be accessed through Alt+9 keyboard shortcut
[image: ./Pictures/image319.png]

On the left side of the current agent name there’s a tooltip, appearing via mouseover, that contains the agent session details.
The agent status contains a bullet that defines the status of the agent with different colors, as per below scheme:
	
black: the agent status is unknown. This could happen if the last agent activity is outside of the configurable analysis timer used by QueueMetrics to retrieve agent information.

	
green: the agent is logged in on at least one queue

	
purple: the agent is logged out from all queues

	
red: the agent is currently paused

At the right side of the menu bar there’s the dropdown menu shown in the below picture:
[image: ./Pictures/image320.png]

The dropdown menu allows the agent to access all the different panels:
	
SoftPhone

	
Call Status

	
Call List

	
Agent Logon

	
Pauses

	
Dialout

All the panels can be accessed by clicking on the associated menu row or through the keyboard shortcut combination key as specified in the menu (i.e. Alt+1 for softphone panel).
If properly configured, the dropdown menu allows to select a web page that will be shown as background. This is the case, for example, of an external CRM page or Company intranet pages.
8.7.1. The integrated soft phone panel

Keyboard shortcut: Alt+1.
The new real-time agents page integrates a softphone based on the sipml5 project. This softphone is proved running properly with Chrome browser and Asterisk11+webrtc2sip or Asterisk12.
The softphone automatically registers to the SIP/WebRTC server with the SIP credentials specified in the user administration page and a green bullet is shown in the softphone panel. The agent
can start calls typing the number to be dialed then clicking on the "Start Call" button.
[image: ./Pictures/image321.png]

Each time the agent receives a call from the queue, the softphone pops up and the "Start Call" button blinks red. Clicking on the "Start Call" the agent could answer to the call. During the call
touch tones could be sent by clicking on the dial pad provided in the panel.
For more information on how to configure the softphone, please refer to Section 21.16, “Configuring the new Real-time Agents Page” and Section 21.4, “Configuring agents”
	[image: [Note]]	
	The softphone uses the local PC microphone. Chrome security policies allow permanent use of the local microphone only for sites secured with HTTPS. Please make sure your QueueMetrics
instance is running over secured HTTP and relax all security policies for the QueueMetrics URLs. This could be done by clicking on the shield located in the Chrome URL bar and selecting "allow
not secure scripts for this site". Be sure to allow microphone usage for the QueueMetrics URL at the very first call.

8.7.2. The call status panel

Keyboard shortcut: Alt+2.
This panel reports a summary of current ongoing call.
[image: ./Pictures/image322.png]

8.7.3. The call list panel

Keyboard shortcut: Alt+3.
It reports the list of most recent calls. Each row is associated with a call. The agent could find, for each call, a set of clickable icons useful to open the URL associated to the call (if any) or to open the
outcome or the QA form panel (see below).
[image: ./Pictures/image323.png]

8.7.4. Agent logon panel

Keyboard shortcut: Alt+4.
The Agent logon panel is used to handle the login and logout process. The panel reports two lists of queues. On the left side there is the list of queues where the agent could login; on the right side there is the
list of queues where the agent is already logged in. To login/logout to a queue or a set of queues, the agent must select the queue(s) from the correct list then click on the proper button located in between
the lists. Based on the direction defined by a set of arrows on each button, the login (from left to right) or logout (from right to left) process is performed. The agent can login/logout on all the assigned queueues or
on all the available queues with a single click through the arrow/line or double arrows labeled buttons
[image: ./Pictures/image324.png]

In order to login/logout, the agent must compile the Agent Code and the Current Extension fields (available in hotdesking mode). If not properly specified, the fields will be marked red and no login/logout processes
are triggered. The Agent cannot change their Agent Code and Current Extension fields if already logged on a queue (this feature may be disabled setting a specific configuration key, see Appendix D, System preferences for realtime configuration parameters).
The Agent logon panel lets the agent able to switch between multiple servers (only for cluster mode).

8.7.5. Pauses panel

Keyboard shortcut: Alt+5.
The Agent can pause and unpause itself by selecting the appropriate pause code from the dropdown list then clicking to the Pause button. The Agent can teminate the pause by clicking on the Unpause button.
[image: ./Pictures/image325.png]

	[image: [Note]]	
	A pause can be associated to an undefined code only if specified by a configuration key set, otherwise the agent must always specify an appropriate pause code before clicking the Pause button.

8.7.6. Dialout panel

Keyboard shortcut: Alt+6.
The dialout panel is used to start a call through an outbound queue. The dropdown in the panel reports only the outbound queues where the agent is already logged in.
[image: ./Pictures/image326.png]

An agent can start a call by typing the number in the text field, then selecting the appropriate outbound queue from the dropdown and clicking on the "Dial" button.
If the softphone panel is enabled it will pop up with the "Start Call" button blinking red. The Agent must click on this button in order to start the call.

8.7.7. Custom Web panel

Keyboard shortcut: Alt+7.
The custom web panel is used to embed a user defined external website or custom intranet pages. The panel is refreshed each time
it’s selected and/or moved. Target for this panel is to allow integration with custom implemented indicators and/or messages. For complex
external pages, or for pages where spurious refreshes should avoided, please use the custom background (see below) instead of this panel.
[image: ./Pictures/image329.png]

The panel is optionally enabled by modifying the configuration keys realtime.agent_webpanel1_url and realtime.agent_webpanel1_label
located in the configuration.properties file.
	[image: [Note]]	
	For technical reasons is not possible to handle keyboard shortcuts if the current keyboard and mouse focus is associated with this panel. It’s recommended to click on
a different panel or the menu bar in order to take the focus before using again keyboard shortcuts.

	[image: [Note]]	
	When QueueMetrics is operating by an HTTPS secured server, be sure to provide the panel contents too over HTTPS, or instruct the Agent browsers to allow mixing unsecured
HTTP contents on secured pages.

8.7.8. QA Form panel

QA grading is available through the QA form panel by clicking on the proper icon associated to the call list for a specific call.
This panel is the exact copy of the "old" QA form panel so the Agent can still perform every action available through the old form.
[image: ./Pictures/image327.png]

	[image: [Note]]	
	QA grading is enabled only for agents holding the security key QA_TRACK

8.7.9. Outcome code panel

Each call can be flagged by an outcome code. This could be done through the outcome panel reachable by clicking on the related icon in the call list panel.
To assign an outcome code, the Agent should select it from the dropdown, then click on the pushbutton. The dialog will close automatically at the end of the process.
[image: ./Pictures/image328.png]

8.7.10. Custom Backgrounds

The background of the working area in new real-time page can be customized with up to tree different URLs pointing to external websites.
Each background can be selected by clicking on the left dropdown menu and/or through the keyboard shortcuts ALT+B (for the first background) or ALT+Q or ALT+W (for the second and the third background).
The first background is something different from the other two backgrounds because it’s aimed to be used by an external CRM subsystem. If properly configured, each time an Agent answers to a call, the first background is
automatically selected reflecting the information associated to the new call. This is useful for retrieving information about the caller.
The Agent can promote the first background to be placed on top of the panels through the keyboard shortcut ALT+0. Reverting to the normal operation is accomplished by clicking on the menu bar in the area located
between the left menu icon and the QueueMetrics logo.
	[image: [Note]]	
	For technical reasons is not possible to handle keyboard shortcuts if the current keyboard and mouse focus is not associated with a panel but with the background. It’s recommended to click on
a panel or the menu bar in order to take the focus before using keyboard shortcuts.

	[image: [Note]]	
	When QueueMetrics is operating by an HTTPS secured server, be sure to provide the background contents too over HTTPS, or instruct the Agent browsers to allow mixing unsecured
HTTP contents on secured pages.

Chapter 9. Tracking IVR data

Since QueueMetrics 13.03, IVR information is tracked natively within QueueMetrics.
IVR information is different from queue information, as:
	
IVR data is typically tracked before a call hits a queue, and bears no queue information.
 So IVR calls might be ancestors of any call in the system.

	
If you know happen to know from the start of the call that a particular call
 belongs to a more specific area, you may want to track this immediately
 so that this IVR call will not appear on "unassigned" calls (see below for more information).

	
IVR data is made up of multiple IVR menus, each of which may have a selection,
 that is a digit pressed by the caller in order to progress forward.

	
An IVR Path is a unique sequence of IVR menus that lead to a destination

	
IVRs may define goals, that is activities that don’t lead the caller directly to a queue but
 are tracked as they satisfy, in a fully automated manner, the needs of a caller.
 For example, when a caller reaches the TTS menu reading back their current account
 amount in your banking IVR, that is usually a goal you want to track.

	
If a call is still in the IVR phase at the end of the analysis, without having
 reached any goal or having hung up, it is considered hung up just after the last
 known event.

IVR tracking requires changes to the current dial-plan of Asterisk in order to track the
required information. Such changes - detailed in section Section 9.2, “Implementing IVR tracking” -
are not complex to implement, and are implemented natively in the QueueMetrics module
of FreePBX. So if you use a common Asterisk distribution, chances are you already
have IVR tracking available.
9.1. A call’s life-cycle

When a call is tracked withing QM, it may traverse the following tree:
[image: ./Pictures/QM_IVR_lifecycle.png]

As you can see, QM defines three time periods about a call:
	
the IVR Time, that is between when a call is first tracked and when it hits a queue.
 For calls that do not have any events before hitting a queue, it is always set to zero.

	
the Wait Time, that is how long a call has been waiting on a queue before being answered or
 hung up

	
the Talk Time, that is the length of the conversation between the agent and the caller.

9.1.1. IVRs and QueueMetrics

QueueMetrics handles IVRs when running reports by filtering all calls by the set of queues
specified in the report. As IVRs have no queues, all IVRs are processed for the time period
requested. IVRs that end up on queues different from the ones being reported on are
reported as "lost".
IVR activity usually takes place before the call is queued. Filters on IVRs, DNIS and caller-ids are
correctly applied to the analysis if specified (so you can drill down an IVR analysis on a specific
selection path or on a caller / called number).
What you get out of an IVR analysis:
	
Tracing IVR paths: the report Section 6.13.1, “IV01 - IVR Traversals”. This way you can see which paths were traversed,
 how many calls went through each path and what happened to them. This is very useful
 as it is the key to understanding attrition - people hangin up without having reached a goal.

	
Tracing IVR timings: the report Section 6.13.2, “IV02 - IVR Timing”. By understanding the timing statistics of
 each IVR menu, you can improve the user experience by making often-accessed items higher
 on the menus and on top of the tree. This improves user satisfatction and saves
 circuit usage.

	
Tracing IVR goals: the report Section 6.13.3, “IV03 - IVR Goals”. For each goal, what path traversal tree
 was followed, how much it took for it to be traversed as average / min / max times.

	
IVR call details: all calls that were not queued are availble in the IVR call details,
 under the codes Section 6.2.4, “OD04 - IVR details (paged)” and Section 6.2.5, “OD05 - IVR details (full list)”.

The detailed description of each data block is visible in the relevant manual section.

9.1.2. Using IVR areas

Considering an IVR call as a possible ancestor of any queued call on the system is often overkill.
Very often you are able to tell - for example, based on the DNIS or the caller-id - the "area"
that the call pertains to. If this does not happen, calls tracked at the IVR level do not belong to
a queue but are possible ancestors of any queue â�� and therefore appear in the IVR and attrition
reports for any queue.
Though this requirement is formally correct (as the main reason for having an IVR offered
is routing the caller into the correct queue) it often happens that at some point during
the call life-cycle, before the call is connected to a queue, you can determine an â��areaâ�� of interest
 that may or may not be a specific queue.
For example, if your call center services multiple clients, you will likely have a separate
DNIS for each. When that DNIS is called, maybe you do not yet know if the call will be
connected to "client7-sales" or "client7-support", but you are sure that it will be
for "client, so it will be inappropriate to show that call as a general untagged
ancestor to any call queued on the system.

9.1.3. Tagging calls by area in the QueueMetrics security system

The QueueMetrics security system is built so that only information pertaining to
the queues an user has express permission on are accessible for reporting or monitoring.
As the unit of access is the queue, we had find an access token that acts "as-if" it was a proper queue.
We call this "area" and we will log this to the queue_log in the general queue field.
This makes it possible to decide on which areas the reports should run by adding the areas to the
allowed queues for a specific report, as you would generally do when creating a composite queue.
For instance, to implement the example above, you might be reporting on a composite queue
defined as "ivr-client7|client7-sales|client7-support".
A call starts it life-cycle by belonging to area NONE, then starts belonging to an area
as soon as one is specified, and starts belonging to a queue as soon as it hits one.
Neither behavior is reversible.
The following visibility rules apply:
	 	IVR call - area = NONE (c.1) 	 IVR call - area set (c.2) 	 IVR call - queue reached (c.3)
	Any report for any queue
	Visible
	-
	-

	Reports for destination queue(s) only
	Visible
	Not Visible
	Visible

	Reports for area(s) and destination queue(s)
	Visible
	Visible
	Visible

The initial QueueMetrics IVR tracking only implemented columns #1 and #3 of the table above. By adding the "areas" as in column #2:
	
Existing systems are backwards-compatible; the behavior does not change unless you specify an area for a call;

	
You are free - if you want - to specify an area immediately, so that the behavior specified in column #1 does never happen on your system.

9.1.4. Using areas

The following general rules apply to areas:
	
A call is displayed in QueueMetrics as belonging to the last area or queue it was showing at its termination or by the end of the requested time-frame.

	
An area is set on the first call verb having an area different from NONE. This may or may not be the first tracking verb on the call.

	
You cannot specify an area of NONE after a call had an area specified. This behavior is implemented in order to avoid logging the area on each IVR key-press on manually-created dial-plans. If you do, the area is not changed

	
If you specify a different area for the call, the new code replaces the old one.

	
When a call finally enters a queue, the queue code replaces the area code

The area name might be any valid name in Asterisk (lowercase ascii7 string, not containing spaces or pipes). Uppercase names are automatically lowercased upon reading. It is perfectly allowable to use the very same code for a queue and an area.
	[image: [Tip]]	
	We suggest using name similar to "ivr-abc" in order to make it clear it is not a normal queue.

In cases where the IVR tree is extremely complex, you might want to specify multiple areas for the same call. In this case, when you run a report, you must specify all the different areas that make up your IVR tree as the allowed queue(s) for the report. As always:
	
Any call which final state was without an area will be visible in all reports.

	
Any call which final state is in a certain area is only visible to users having that area defined as a possible queue

9.2. Implementing IVR tracking

In order to track IVR data, we need to tell QM a few bits of infromation:
	
When a digit is pressed, the time-stamp when the event happens,
 the digit pressed and the name of the IVR menu. These are logged
 through the verb INFO-IVRAPPEND

	
When a call is started, you may want to log the moment when
 the call reaches the PBX; the calling number and optionally
 the calling DID. This is done through INFO-IVRSTART and it is optional

	
When a goal is reached, you may want to log the name of the goal.
 This is done through INFO-IVRGOAL and it is optional

	
When a call is hung up in the IVR, you may want to log this information
 in order to have detailed IVR timing.
 This is done through INFO-IVRHANGUP and it is optional.

	[image: [Warning]]	
	Before QueueMetrics 13.03, QueueMetrics used to track IVR sequences as one
 single record containing the digit sequence and optionally a second entry
 tracking IVR wait time. Though this is still recognized by QueueMetrics,
 it is impossible to run traversal analyses on such data as the required
 information is not present.

9.2.1. Dial-plan tracking

In order to implement dial-plan tracking, the unique-id logged must match the
unique-id of the call leg that will reach the queue.
In order to track the beginning of a call, you should produce an
INFO IVRSTART record like the following one:
1353461650|1353461627.33271|NONE|NONE|INFO|IVRSTART|1234|5556777
This way you track both the caller-id of the caller ("1234" in or case) and the DNIS
the call came though ("5556777" in our case). You may leave either field blank
if that information is not needed.
The record above is optional - if it is missing calls will be tracked from the first IVR menu,
and the traversal time for that IVR menu will be set to zero.
In order to track an IVR digit, you would use the following format:
1353461660|1353461627.33271|NONE|NONE|INFO|IVRAPPEND|1|ivr-2
In this case, we tell QM that the key 1 was pressed in IVR "ivr-2". The IVR event duration
(that is, how much it took the caller to make a selection) is automatically inferred from the end of the
previous event. If this is not the case, you have an option to pass it explicitly to
QM as the last paramenter (6 seconds in the case shown):
1353461670|1353461627.33271|NONE|NONE|INFO|IVRAPPEND|1|ivr-2|6
If a goal is reached, you should mark this by producing a record like:
1353461680|1353461627.33271|NONE|NONE|INFO|IVRGOAL|attendant3|ivr-2|6
The goal in this case is called "attendant3". The IVR name is optional an not currently used. The explicit
timing duration is optional.
A call can have only one goal. Any call hitting a queue is considered to having reached a goal.
In order to tell QM that a call hung-up in an IVR, you should produce a record like:
1353461660|1353461627.33271|NONE|NONE|INFO|IVRHANGUP|

9.2.2. Tracking areas

The logging is changed so that the INFO verbs allows the reading of this piece of information. So any sub-verb (e.g. INFO DNIS, INFO IVRSTART, INFO IVRAPPEND and more) will work correctly with this.
An example of logging might be:
1345678|1234.5678|IVR-1|NONE|INFO|IVRSTART|1234|12345
This logs the IVRSTART as belonging to area IVR-1.
It is perfectly valid to assign a call to an area from a specific point in time onwards (generally because they made a defining IVR decision)
1345668|1234.5678|NONE|NONE|INFO|IVRSTART|1234|12345
1345679|1234.5678|IVR-3|NONE|INFO|IVRAPPEND|3|MYMENU
As shown above.

9.2.3. Deprecated IVR tracking verbs

The following records are understood by QM but should not be used anymore:
1000000|214530.A|sk-fissi|NONE|INFO|IVRWAIT
1000000|214530.A|sk-fissi|NONE|INFO|IVR|345

9.2.4. The FreePBX module

Since FreePBX 2.11 a new module is available on the FreePBX SVN repository. This module
allows to easily integrate FreePBX IVR with QueueMetrics.
The module will be published shortly and will be available through the standard FreePBX modules administration page.
Till this date, you could manually install the module following the below steps.
In a command shell, type the code:
svn co http://svn.freepbx.org/modules/branches/2.11/queuemetrics
tar -cvf queuemetrics-2.11.0.1.tar queuemetrics/
gzip queuemetrics-2.11.0.1.tar
This generates a queuemetrics-2.11.0.1.tar.gz module you can install on your FreePBX box.
In the FreePBX modules administration page press the "Upload modules" button.
[image: ./Pictures/image308.png]

Browse to the queuemetrics-2.11.0.1.tar.gz file you downloaded from the FreePBX repository.
[image: ./Pictures/image309.png]

then press "Upload" to store the file on your FreePBX box.
[image: ./Pictures/image310.png]

You will find the module in the modules administration page.
[image: ./Pictures/image311.png]

Click on it then select the "Install" option. Click on "Process" at the bottom of the page.
[image: ./Pictures/image312.png]

Then confirm.
[image: ./Pictures/image313.png]

At the end of the procedure you will find a new option on the Settings menu.
[image: ./Pictures/image314.png]

This opens a new page settings where you can enable the QueueMetrics IVR log routines.
[image: ./Pictures/image315.png]

Chapter 10. QueueMetrics Tasks

Tasks are a general mechanism to send some QM users a set of actions to perform.
This could be, e.g. an agent which call has been reviewed, or a grader knowing
that an agent has accepted a task.
Tasks are handled on a separate page that works as a "mailbox" for incoming tasks
and lets you check the tasks you generated.
Differently from the way QueueMetrics usually works, tasks also allow for "direct
URL linking", so that you can have a short URL that is published over RSS or email
and allows the user access to the task. Before access is granted, anyway, user
authentication is performed.
Tasks are strictly typed, that is, you can have only a given set of them. In order
to handle a basic one-to-one communication, a generic Note task is provided.
Tasks are shown on the top of each page generated by QueueMetrics - when you have
new tasks, you see a flasing NEW icon. A user’s tasks are exported over RSS - a RSS
icon allows easy subscription by clicking on it.
Unread tasks are also shown on the AGAW page, with a count of the number of tasks outstanding.
Access to the Task subsystem is controlled by the key TASKS.
10.1. The task page

If the user is enabled for tasks, they will see a couple of new icons
on the top every page:
[image: ./Pictures/Tasks_icons.png]

The yellow icon leads to the tasks page; if you have new tasks, it is
displayed together with a flashing NEW icon.
The orange icons lets you acees a RSS feed for all the tasks for the current
user (see below on how to set this up).
When you click on the yellow icon, you are lead to the tasks editor page:
[image: ./Pictures/Tasks_page.png]

On top of the page, you see a selector with:
	
Tasks to be done: tasks addressed to me that I have to complete

	
My group: Tasks for my class that I can address

	
Tasks I completed: the set of tasks that I completed (and their completion codes)

	
Task I sent: The tasks I sent somebody else (if any)

	
A box to access directly a task by number (it will be found only if the current
 user can see it: that is, he is the assignee, or a member of the group it is assigned
 to, or the assigner).

You can optionally make the list shorter by selecting:
	
A task type

	
The period the task was supposed to be due

	
An option to display future tasks as well

	
The Process field which is formed by the Process Family / Process ID and can be inserted only via XML-RPC.

For each task, the following information is displayed:
	
An icon displays whether the task is overdue (red),
 about to be due (yellow) or yet to be due (green)

	
The task sender

	
The task ID, that is an unique number that lets you
 access a specific task directly

	
An icon for the type of task involved

	
The task description

	
The due date (if any).

	
The status: it can be TBD (to be done) or Completed or Disputed.

The list is paged, so you only see the first 10 elements or so.
When you click on a the pencil icon of a task, it is displayed in a panel
like the one below:
[image: ./Pictures/Tasks_detail_qa.png]

This is a QA task; tasks of other kinds may differ slightly in their
appearance and behavior.
The top box contains a description of the task; while the bottom box contains a note
that can be edited freely.
The following buttons are typical:
	
View: in case the task is related to something else (like in this case, a QA form)
 this button lets you access a form with the related information.

	
Process: the user acknowledges having seen the task

	
Dispute: the user acknowledges having seen the task, and disputes the given score

	
Edit Note: lets you save the edited Note field.

By the bottom of the page, general information on the task is displayed:
	
From: the originator

	
To: the receiver

	
Created on: the day it was created

	
Valid from: the day the task started being addressable

	
Expires on: the deadline for completing the task

	
Last updated: the date this task was last processed

	
Status: the current task status

If the task is related to other tasks, a task history table is shown. In this table user could
find, for each related task, information about:
	
Task Id: the unique identifier of the related task

	
From: the originator

	
To: the receiver

	
Created on: the day it was created

	
Valid from: the day the task started being addressable

	
Expires on: the deadline for completing the task

	
Last updated: the date this task was last processed

	
Satus: the current task status

	
Abstract: the task title

	
Notes: notes associated to the task (if any)

When a user processes or disputes a task, it is possible to ping a specific URL if defined within the property default.tasks.pingURL.
Further details about this property can be found within the System Preferences chapter.
10.1.1. Extended task reports

Users holding the special key TASKS_VIEWALL can monitor all tasks on the system -
they will have three new choices in the drop-down menu:
	
All tasks

	
All tasks to be done

	
All tasks done

Combined with the advanced search criteria, they can be used by the superuser to
monitor the well-being of tasks being handled on the system.

10.1.2. Task Statistics

Users holding the special key TASKS_REP can access the tab showing task statistics where it is possible to Search by Tasks start/end date and by Task type.
[image: ./Pictures/task_statistics.png]

The result of such Search shows, for each Task Type:
	
The Process field

	
Created/existing tasks for each task Type

	
How many tasks are Open

	
How many are Overdue

	
How many have been Solved within the due date

	
How many were Solved late

	
The Average Resolution Time

The "View Details" icon leads to Task Details where one can see the Status of each Task, the users involved, the Task Creation date/time, Validity From and Expiry date/time.

10.1.3. Tasks for groups: Class tasks

Tasks can be addressed to user Classes as well as users. This is useful e.g. for
supervisors, when you mean "Any supervisor", not a specific one.
When you act on such a task, you get the ownership, that is the task is changed
as to signify it was originally sent to the acting agent.
You do not see outstanding class tasks with the "new" icon, as it is for
personal tasks.
When a task is processed by a person, the acting person is displayed as
"PersonsName on behalf of AgentClass".

10.1.4. Task validity and expiration

Each task has a "Valid from" and "Due by" dates. This makes it possible to create tasks that:
	
Show up in the future (so you can add yourself a task to complete
 some future action)

	
Be notified of the expiration dates.

All tasks that do not have a specified expiration date are to expire by 7 days after
they are added to the system.

10.2. Types of tasks handled by QueueMetrics

The following task types are currently defined, as explained in the
graph below:
[image: ./Pictures/Tasks_schema.png]

10.2.1. Call QA Graded Task

This task is generated when someone grades a call processed by an agent, and it
is sent to the agent that processed the call.
The title is. "Call graded on queue XXXX processed on XXX".
When you click on the task, you are lead to the correct QA form for that call.
You can enter comments on that call and ACCEPT/DISPUTE the grading.
When you process that task, a new task of type NOTE is sent to the grader.
If you DISPUTE the grading, a NOTE task is sent out to the person who graded the
call and a separate one to the supervisor of the agent who disputed (if any).

10.2.2. Note Task

This task simply displays a text and can open up a URL when clicking on the
Accept button. This is used to notify on an ACCEPT/DISPUTE.
The task note is sent when some events happen in QueueMetrics like, for example,
when someone grades an agent call, or an administrator/supervisor changes group for a
particular agent.
The task note could also be sent through an external XML-RPC call.

10.2.3. Training Task

This is a special task that contains a URL and is sent to the agent by the grader to improve their skills.
This is used to send links to CBTs.
This task coult be sent through the Performance Tracker Result Page.
An agent can accept (open up the URL) or dispute this task.
(This task basically behaves like a Note but has a Dispute button as well).

10.2.4. Meeting Task

This is a task that is sent to the agent, via XML-RPC, by his/her line management and includes the message, the date and time of the event.
An agent can accept or dispute/refuse/reject this task.

10.3. RSS data export for tasks

Any QueueMetrics user can subscribe to their own "task inbox" as RSS feed.
You can access the RSS feed and subscribe to it in most browsers just by
clicking on the orange RSS icon that is displayed next to the Tasks icon.
In order to display the RSS icon, you need to set the properties as described in the chapter below: "Setting computed URLs"
	[image: [Warning]]	
	This access method offers no security at all, so any user who
 has access to any other user’s
 workstation can access the other person’s RSS feed.

The RSS feed contains only the the titles of current tasks to be done and a link;
when the link is clicked, the user is authenticated (if necessary) and lead to the tasks page
� so basically clicking on the RSS link is the same thing as going to the Tasks page and
selecting a task in order to view its details. If the user that logs on is not the intended
recipient of the task, the task is not displayed.
	[image: [Tip]]	
	It is advisable that the RSS polling speed be set to a minimum
 on the RSS reader (like once every 20 minutes or so) in order
 to minimize the load on the QM server.

10.3.1. Setting computed URLs

In the configuration files, you should set two properties before using RSS tasks:
url.qm=http://qmserver.my.corp:8080/queuemetrics
url.rss=http://qmserver-rss.my.corp:8080/queuemetrics
In general, the servers qmserver and qmserver-rss should be the same machine - this is
necessary because if your RSS reader is embedded in your browser, every time it requests
a RSS feed, it also logs you off from the current session.

Chapter 11. The Agent Awareness subsystem (AGAW)

QueueMetrics was designed primarily to be used by supervisors and administrators to keep
track of what is going on in the Call Centre. In most Call-Centres, keeping
track of the current activity level using a real-time wallboard and/or the agent’s page is enough.
In some high-performance setups, with large and geographically distributed agent groups, it is mandatory to have a better
level of performance awareness by the agents, and to have "off band", live
communication lines going from the supervisor to the agent and from the agent
to the supervisor.
QueueMetrics addresses this issue using a module called Agent Awareness (AGAW), that is
basically a Firefox or Chrome plug-in that each agent can use to see:
	
A wealth of information about how the
 agent and/or the queue is performing; this information offers a large set of performance
 metrics so that the feedback on the agent’s behaviour is immediate

	
A way for the agent to get in touch with
 her supervisors using an "off-band" channel (chat) so that they can keep on
 working with no downtime when speaking to their supervisors or with
 second-line product experts

	
A way for the supervisor to send targeted
 broadcast messages to his own agents, making it feasible to monitor
 geographically-dispersed agents

The choice of developing Firefox/Chrome plug-ins was because this way the agent can keep on
working on a browser-based interface (CRM, data entry…) while keeping an eye
on their own statistics in a non-obtrusive manner.
The AGAW implementation is divided into three logically distinct elements:
	
The configuration and supervisor access part, done through QueueMetrics: Supervisors
 and managers can monitor the AGAW modules through the QueueMetrics program,
 when given the correct security keys to do so. They can also send and
 remove broadcast messages to agents through the main QueueMetrics interface.

	
The Queue Runner : This is a command-line Java program that, in turn, runs statistics for all
 defined queues and agents. Though it leverages on QueueMetrics to run the
 analysis, it does not run within a servlet container and doesn’t have any
 visible interface. The Queue Runner can reside on a separate server from
 the main QueueMetrics instance.

	
The AGAW facades: The facades are the access points for each agent to log on and see their own statistics.
 They run in a servlet container and are positioned under the QueueMetrics
 webapp. The facades are not strictly speaking a part of QueueMetrics, and
 are thought of to be deployed on a separate server to handle very high
 load.

Each component can work separately on a separate server; the whole system is tied
together by the usage of the same MySQL database. As the part that might be handling the
highest load is the AGAW facades, that are constantly polled by hundreds or
thousands of concurrent agents, they can be deployed on a plurality of separate
servers and can even connect to multiple replicas of the main DB in order to
handle the highest loads.
11.1. The AGAW architecture

The AGAW architecture is composed of the basic QM architecture
and a number of new modules, as displayed.
[image: ./Pictures/AGAW_architecture.png]

The new AGAW modules are drawn in red (AGAW Runner, AGAW database, AGAW Facade) while traditional QueueMetrics components are
drawn in blue.
This is the way it works:
	
QueueMetrics receives data from one or more Asterisk servers and processes it

	
The AGAW Runner, a specialized, command-line script, runs periodically (e.g. every 5 minutes) and gather
 statistics for all selected queues. This is a time-consuming task where
 "hard real-time" is not necessary. Queues are processed in a sequential
 order.

	
Data processed by the Runner is stored in a specialized database

	
A set of cron scripts "purges" the database periodically from stale data.

On the client side:
	
A Firefox/Chrome extension polls the system every
 few seconds to gather new data and new broadcast messages

	
The AGAW facade component is able to
 retrieve the latest pre-processed data in a few milliseconds, allowing to have hundreds or thousands of clients fed without overloading
 the QueueMetrics server

Though it is a separate entity from the main QueueMetrics, all AGAW components ship
within the same installation as QM - so there is no need for a separate
installation.
In order to activate the AGAW subsystem, see Section 21.20, “Installing the AGAW runner”. Full configuration information can
be found in Section 21.3.3, “Configuring queues to be processed by the AGAW Runner”.
You will also need an AGAW licence key (or you can use the supplied, two-agent free key).
11.1.1. Security keys used by the AGAW subsystem

The following security keys control the accessibility of the AGAW sub system.
	Key 	Subsystem 	Meaning
	AGAW
	Facades
	This agent can access data through a facade (already set by default in class AGENTS)

	AGAW_ADM
	QM
	Lets you access the AGAW administrator pages: seeing the logs, the runs in progress, etc.

	AGAW_REP
	QM
	Lets you access per-supervision and per-location supervisor statistics

	BRO_MSG
	QM
	Enables the Broadcast Messages page (from the Real-time page)

	MON_IM
	QM
	This supervisor can start an IM chat to the given client (if the agent has an IM address defined on record)

11.2. Installing the AGAW Licence

The installation of the AGAW licence requires a first step prior to installing the licence key, whereas we need to enable the AGAW profile that ships with QueueMetrics (which is usually disabled) by configuring the AGAW user. Choose "Edit Users" from the Home page and select the "Cfg Users" tab. Make sure that "Enabled" field is set to "Yes". Once you have filled out the required fields, as shown in the image below, select "Save".
[image: ./Pictures/AGAW_user_config.png]

You can now install the new AGAW licence key by selecting the "Agent Awareness manager" link from the Home page and clicking on the "Install new key" button at the bottom of the screen.
This will open a popup that allows to enter/paste the new licence key.
By clicking on the "Run" button, we will see that the AGAW runner is restarted.
To check the successful installation of the new key, select the "Logs" tab, where you should see that the Queue runner is currently running on a set of queues.
You now have to configure the queues on which AGAW will run. Select "Edit Queues" from the Home page and select one of the atomic queues (not a composite queues) amongst the displayed queues (ie. a queue that matches only one Asterisk queue).
[image: ./Pictures/AGAW_queue_config.png]

Make sure that the field "AGAW enabled for this queue" is set to "Yes" as shown in the image above. Set the "AGAW lookback period", which is the length of time (in minutes) in the past that is used for the realtime analysis.
The AGAW "Attention Levels" are alarms that can be set as values in seconds, to trigger alarms for the queue or the agent. Once this form has been completed, select "Save" and proceed with the installation of the AGAW Client, as described in the following chapters.

11.3. Agents: the AGAW client

The AGAW client is used by each agent taking part in the AGAW
project and receiving statistics. It is currently deployed as a Firefox/Chrome
extension; the facade component was meant to be modular, so it is well possible
that other front-ends will be written in the future.

11.4. Installing with Firefox

AGAW can be installed in Firefox by browsing the Licence
page of QueueMetrics and clicking on the "Firefox" link. It will work both
in Windows and Linux versions of Firefox
[image: ./Pictures/AGAW_install_link.png]

It is also possible to send the link via e-mail to other Firefox users that share the same
QueueMetrics instance.
Once you click on the link, you should authorize installation of the extension.
[image: ./Pictures/AGAW_FF_install.png]

After the installation, you will need to restart your browser. When you restart, you will
notice a new entry called "QueueMetrics sidebar" in the "Tools" menu.
	[image: [Tip]]	
	In FireFox 4 and newer, you have to manually enable the "Menu" bar, so that you can find
 the "Tools" menu. Once the extension is active and running, you can disable
 the "Menu" bar.

The first time you open the sidebar, you will have to click on the "Setup" button.
[image: ./Pictures/AGAW_FF_ClientSetup.png]

You should enter the following information:
	
Server URL: http://myserver:8080/queuemetrics/qm_agaw_facade_ajax.do (take from the Licence page)

	
Username: the agent code (or leave blank)

	
Password: the agent’s QM password (or leave blank)

11.5. Installing with Chrome

AGAW can be installed in Chrome by browsing the Licence
page of QueueMetrics and clicking on the "Chrome" link.
[image: ./Pictures/AGAW_install_link.png]

It is also possible to send the link via e-mail to other Chrome users that share the same
QueueMetrics instance.
On older versions of Chrome, it is enough to click on the link to have the
extension installed. On versions 21 and higher, the user must:
	
Download the extension (agaw4chrome.crx) to their PC

	
Click the wrench icon on the browser toolbar.

	
Select "Tools" > "Extensions".

	
Drag the file just downloaded onto the Extensions page.

	
You will need to authorize the newly installed extension after reviewing its security settings

This will add the QM icon at the top right-hand corner of your browser page (next to the Chrome settings icon).
	[image: [Tip]]	
	Sysadmins managing a large number of workstations may find it easier to simply add their QM
 instance to the list of safe servers users can add extensions from.
 See http://www.chromium.org/administrators/policy-list-3#ExtensionInstallSources

By clicking on the new icon, the QueueMetrics AGAW settings page will be displayed, as shown below:
[image: ./Pictures/AGAW_Chrome_settings.png]

You should enter the following information:
	
Server URL: http://myserver:8080/queuemetrics/qm_agaw_facade_ajax.do (take from the Licence page)

	
Username: the agent code

	
Password: the agent’s QM password

The "Panel height" Advanced setting allows to alter/adjust the size (in pixels) of the extension panel, as required.
[image: ./Pictures/AGAW_Chrome_extension.png]

If you ever need to remove the AGAW extension you can simply select the Chrome settings icon and choose Tools/Extensions - here you can click on the "Remove" button next to the extension name. Confirm the extension removal.
11.5.1. AGAW Client usage

AGAW Client usage depends on the agent being able to login to QueueMetrics using the
Agent’s page and hold the AGAW key.
If the AGAW web-server processes crash, the client will become blank and it can be
restarted by toggling the sidebar off and on again.
The client can be set up to require a manual authentication or to provide it by default,
by entering or not entering the defaults in the Setup popup.
Once the agent logs in, he gets a display that shows the current situation.
On the top of the section, the current name of the agent is displayed, as well as the system
time when the page was last updated. Other agent information is shown, e.g. the
current agent status, the Asterisk code, the current location and supervisor (if any).
Also, a list of queues is displayed, where:
	
The agent is a known member, or

	
The agent has data for it

For each queue a different set of parameters can be displayed. The only common parameter
is the current number of waiting calls, that is always displayed. Each
parameter can be shown at the agent level, or at the queue level, or both.
Each parameter can have its own alarm threshold - this is definable separately
per-queue and per-agent.
At the bottom of the client section there is a space reserved for broadcast messages that are
of interest for the current agent, and are shown in a "bulletin board" fashion,
for a given period (a few hours) and showing only the latest ones.
	[image: [Note]]	
	At the moment, you can either use QueueMetrics or the AGAW client in the same
browser, unless you use a different alias for the server in order to have two
active, distinct user sessions. See ???.

11.5.2. Which parameters can be displayed on the client?

A large set of metrics can be displayed on the client. We suggest to keep them to a
minimum, to avoid cluttering the agent’s view with information that is not
currently critical to her work.
	Code 	Description 	Available for queue? 	Available for Agent?
	ACL
	Average Call Length
	X
	X

	Wrap
	Average wrap time
	X
	X

	Avg Wait
	Average wait time
	X
	

	Max Wait
	Maximum wait time
	X
	

	N. Wait
	Number of calls waiting
	X
	

	N Calls
	Absolute number of calls
	
	X

	CPH
	Contacts per Hour
	X
	X

	QCPH
	Qualified Contacts per Hour
	X
	X

	SPH
	Sales per Hour
	X
	X

	QCONV%
	Qualified Conversions %
	X
	X

	CONV%
	Conversions %
	X
	X

For all metrics, red and yellow alarms can be set separately at the queue and agent
level, and for each queue separately.

11.5.3. Contacting supervisors

If this feature is enabled in the queue, agents can talk back to supervisors using an
XMPP/Jabber client. This will happen by clicking on a link that points to the
correct supervisor next to the queue name.
If you have FastPath installed, you can use FastPath to create a virtual supervisor queue
that will be available through a "Chat Now" button that will appear on the bottom
of the AGAW client.

11.6. Supervisors: accessing AGAW statistics

By giving the key AGAW_REP to your supervisors, you can have them monitor the statistics
of their own agents, filtering by the locations they are allowed to see or their own supervision.
This will lead to a page where the statistics for the relevant agents will be displayed.
These are the actual live stats that your agents are seeing.
[image: ./Pictures/image088.png]

All the statistics can be displayed in a set of colours:
	
Black: the agent is seeing this item, no alarms

	
Yellow: the agent is seeing this item, yellow alarm triggered

	
Red: the agent is seeing this item, red alarm triggered

	
Gray: this item is hidden from the agent (but is calculated all the same).

Statistics are reloaded when the AGAW runner script runs, so will be updated sequentially by
queue. If the runner script is not active, stale statistics will be displayed.
11.6.1. Supervisors: sending broadcast notifications

If the supervisor holds the key BRO_MSG, when he navigates to the Realtime page there will be a tab
called "Broadcast" as in the following page:
[image: ./Pictures/image090.png]

From this page you can enter broadcast messages that can reach one or more of the
following:
	
Everyone logged in (using the Lightning icon)

	
All agents working on a queue

	
All agents working at a specific location

	
A specific agent

	
If the user has the key SUPERVISOR, all the agents he’s currently supervising (using the Group icon)

It is also possible to remove messages that have been sent using the "Delete" icon on the
right.
Broadcast notifications can be received in multiple ways:
	
By agents using the AGAW client, or

	
By agents logged in with the Agent’s page, or

	
By agents via an RSS feed

In order for your agents to access their broadcast feed, they
should point their RSS reader to the following URL:
http://qmserver-rssname.corp:8080/queuemetrics/qm_rss_broadcasts.do?user=Agent/101
where Agent/101 is the agent code for the agent whose messages we want to
receive.
	[image: [Tip]]	
	Enabling RSS feeds requires a special configuration - see the
 discussion for Tasks over RSS
Section 10.3, “RSS data export for tasks” which address the same needs.

11.6.2. Supervisors: contacting specific agents

If the agent has a defined XMPP address (defined in the Agent configuration page) and the supervisor holds the key MON_IM,
there will be a new icon that will appear in the Realtime screen and will allow contacting the agent directly via XMPP/Jabber.

11.7. Administrators: monitoring the AGAW system

Administrators can run a general supervision of the whole AGAW system. In order for this
feature to be enabled, they must be given the AGAW_ADM key.
This allows for the "Agent Awareness" entry to appear under the "Edit QueueMetrics settings"
section.
By clicking on it, the user is led to the Status page.
11.7.1. The AGAW status page

This is the main page used to monitor the AGAW subsystem. All data in this section is populated by the Queue Runner - if the
Queue Runner is not running, then you will find no data in this section!
[image: ./Pictures/AGAW_system_status.png]

This page shows the name of each queue that has been or is being processed, when the run
started and ended, how much time it took to run, the number of calls and
distinct agents involved.
For example, in the screenshot you can see that there are two queues in "Current"
status.
At the bottom of the page, you can see the number of entries per status plus the
database size. When requested, QueueMetrics will send the client all queues
that are in the "Complete" state.
Possible run statuses are:
	
Querying: data is being gathered for this queue

	
Inserting: data is being written to the database

	
Complete: data is available for the AGAW clients to read

	
Obsolete: data that was previously available, now waiting for deletion (A number of database systems
 have better performance if data is being added to a table versus the case where it is being added and deleted.
 So we do programmed deletions of stale data)

A histogram makes it clearer as to which kind of lines are in the database.
The page can be reloaded using the button at the top to see what’s going on in
real-time.
By clicking on the details of a run, you will see all agent information that has been
computed for that run of the queue, like in the following screenshot:
[image: ./Pictures/image094.png]

If there are any color alarms, they are shown as the background color. Possible color
configurations are:
	
Black text: item visible in the client, no alarm

	
Yellow background: Item visible, yellow alarm

	
Red background: Item visible, red alarm

	
Gray text: This item is hidden from the client.

11.7.2. The AGAW Table maintenance page

It is possible to perform either a manual or a programmed table maintenance. We
suggest basically running table maintenance from a script, but the manual
option is available in case it’s needed.
Maintenance will first purge unused records, and will then run a table optimization to
maximize access and insert speed.
[image: ./Pictures/image096.png]

For each operation performed, an overview is displayed, showing the duration of the required
operation in milliseconds.
When running on a busy system, high maintenance times are normal, as the
database back-end will try to find a suitable moment to perform the required
operations.

11.7.3. The AGAW Agents page

The Agent page is based on the same routine that fetches data for an agent - if you
select the agent, then all the data that would be currently served to that
agent is shown.
[image: ./Pictures/image098.png]

Agents can be selected from the drop-down box on the top of the page.
This is useful to see what an agent would see without accessing a real facade.

11.7.4. The AGAW logs page

The system log instead will show the log of the activity for both the Queue Runner and for
each agent - this is useful to see real-life performance:
[image: ./Pictures/image100.png]

The AGAW log is divided into three parts:
	
Admin: operations performed by the administrators.

	
Client: access times for clients reading AGAW data. One entry is added for each time the AGAW
 system is accessed

	
Loader: The activity log of the AGAW runner. From here you can see if the Runner is working and what it is
 doing.

In case of errors, the relevant lines are displayed with a red dot.
When the Runner is processing, you get:
	
A line saying that the runner is starting, its current version and how many queues it’s going to
 consider (eg. "Queue Runner $Revision: 1.16 $ starting - 3 queues
 to go.")

	
A line for each processed queue, if errors were encountered and how long it took, one by one (e.g.
 "Q: queue-dps L: 0 - Everything okay - took 250 ms");

	
A line saying that the runner is shutting down and how long the whole run took (e.g. "Queue Runner
 terminating - 828 ms")

You can also see client accesses for debug purposes:
	
You see which agent requested data and the amount of processing time (e.g. "Agent/101 - Client
 Query: Q:2 B:0 E:0 Took 297 ms Pr:0 Lo:94 Ut:0 Pe:0 Co:203 Br:0 =
 297")

	
The various figures can be used for debugging purposes (e.g. "Co" is the connection time to
 the DB)

Chapter 12. Quality Assessment in QueueMetrics

QueueMetrics includes a Quality Assessment (QA) module that lets you:
	
Define a set of metrics to be used for call grading

	
Have the QA team grade calls while they’re being processed or from historical recordings

	
Run complete reports by queue and by agent

12.1. Enabling QA monitoring

In order to use QA monitoring, you should have the following security keys assigned:
	
QA_TRACK: this key means that the person can input QA data. If this person has the keys to access
 historical calls or real-time calls, he will be able to fill-in QA forms.
 Individual forms can be further restricted by key-protecting them

	
QA_REPORT: this keys means that the holder can access QA reports. Individual forms can be further
 restricted by protecting them with a reporting key as well.

	
USR_QAEDIT: this key means that the holder can modify and create QA reporting forms.

12.2. Understanding Quality Assessment

The QA module in QueueMetrics was built in order for a specific QA supervisor to track
the performance of agents on a given set of metrics. Each metric is expressed as a long description and has an
unique engagement code (a short acronym up to 5 letters).
Metrics are user-definable and are clustered together in forms;
a form can hold up to 130 metrics divided in up to 10 metric groups.
A single reporter can grade a call only once for each defined form; any attempt to grade a the same form for the same call multiple times
will not be accepted.
For security reasons, call grading data cannot be modified once input, and forms with live data associated to them
cannot be deleted from the system. In order to have a reduced set of metrics
available if you use successive versions of a form over the period, it is
possible to close a form, i.e. to avoid further input. Deletions, if any, will be performed at the database level
by the system administrator.
Grading data is expressed as integer numbers between 0 and 100; grading all fields is
mandatory, except for fields marked as "optional" in the form definition. The QA team can also input free text comments linked to a specific
call.
It is possible to edit thresholds for different levels of QA grades, e.g. 0-25: Issue, 26-50:
Improvement required, 51-75: Meets expectations, 76-100 Exceeds
expectations. These values can be defined on a form-by-form basis, and make
it possible to count the number of items that belong to each category and to
use a colour code for immediate graphic representation.

12.3. Grading calls

Grading data can be input while listening to the live call (Unattended
monitoring) or while looking at the historical call details or through a particular formatted URL string.
12.3.1. Grading calls on the real-time page

If an agent has the required grants, he will get the grading icon on the right of the
"Calls being processed" table:
[image: ./Pictures/image102.png]

The icon appears only when a call being processed is connected to an agent (as the point
is rating the agent). By clicking on that icon, a popup will appear that lets
you enter QA data. You should be listening to the call using the Unattended
Monitoring icon in QueueMetrics or a different passive listening schedule as
set up in your call center.

12.3.2. Grading historical calls

In order to do the grading of historical calls, you proceed as is the case for audio
recordings. If QA grading is enabled, the button "Track QA" will appear on the
call detail popup, as in the picture below.
[image: ./Pictures/image104.png]

By clicking on the button, the call detail popup will close and a QA form will load.

12.3.3. The input form

If multiple QA forms are available for this QA person, they will be able to select the
correct form by selecting the "Input form" field on the top right.
[image: ./Pictures/image106.png]

The top-left box shows the current threshold values for each levels (please note that
the label associated to each level is form customizable from the form configuration page. See Section 21.9, “Configuring QA forms” for further
information). While you input data into the form, you can see that the number of items that fall into
each category and the average and total scores are updated in real-time.
	[image: [Note]]	
	For each section is reported the overall section score and average. Zero values are marked in red. This simplifies
the discovering of session shortcuts (See Section 21.9.2, “Configuring QA items” for further details) for already scored forms.

As soon as the form has been graded and saved, a set of checkboxes are shown on the
right column of each level. These checkboxes could be used to show/hide questions falling
in each specific range.
[image: ./Pictures/image316.png]

On the top-right box, after the Input form field, a form Status dropdown reports the current form
status. Actually this dropdown is read only and their status could be changed modifying the dataset stored
in the database with an external application.
Following the form status you can see the call details: when it started, on which queue it
was processed, the agent processing it, the caller-id and the Asterisk internal
call-id.
On the top right there are three buttons:
	
Close is used to exit the form without saving changes

	
Notes is used to toggle between scores and notes associated to the call

	
Print is used to start the print process. The print procedure will show scores and notes on the same page.

Then a general purpose "timer" widget is shown. You can use it, for example, to track the hold time when
listening to a call conversation.
At the bottom of the form is the button Save, that is used to exit the form
saving changes. This button will appear only when data are in a consistent state
that allows saving.
If you load a saved form, it will be shown in read-only mode.
On the bottom part of the form there are the different items to be graded, grouped
into a set of categories. If a box contains invalid data (i.e. something that
is not a number between 0 and 100 included) it will be displayed in yellow
and the form shall not be saved.
Following the form definition, items can be graded by:
	
inserting a score value

	
selecting the appropriate value from the dropdown menu

	
checking the proper Yes/No options.

Items that are not mandatory have an associated N/A checkbox;
when checked, it disables the related score value and lets the
user save a form without specifying any score for that item.
If all fields within a given section are defined as N/As, then the Overall Performance will display the entire section with an N/A Average total value.
Items reported in italic are shortcut items; that is, if a shortcut
item totalizes a score that falls into the "Issue" category, the overall form score
will be set to 0.
The value set in some items may control the set of items that are enabled
for the current form; that’s why the form is evaluated again after each user input.
Is possible to assign a free text note or a set of notes to each question in the form.
We call this type of notes as "per-question" notes. Per-question notes could be added
clicking on the icon on the right side of each question and typing the text in the shown popup.
Questions with already associated per-question notes are marked with a different icon as per the following figure:
[image: ./Pictures/image306.png]

For a thorough description of how Forms and Items can be set up, please see
the chapter Configuring QA forms
Section 21.9, “Configuring QA forms” .
When a form is saved, it appears as per the following figure:
[image: ./Pictures/image108.png]

It basically shows the same data that was input, but it cannot be changed anymore
and the supervisor information is shown. If there are known audio recordings
for this call, they are shown under the "Audio recordings" box.
The form now displays a Toggle N/As button which allows to show/hide the Non Applicable specified fields.
Pressing the Notes button, the form will change as per the following figure:
[image: ./Pictures/image109.png]

The user can insert one or more notes that will be saved by pressing the "Add" button;
all comments already added are listed in chronological order together with the per-question notes
inserted for a set of specific form. Per-question notes associated to the selected form are shown at
the beginning of the comments list.
For each call it is possible to add markers which can be created and
deleted as required, in order to keep further details regarding that
specific call. This works best in conjuction with the HTML5 audio player as described on the HTML5 Player
Section 5.2.1, “The HTML5 Audio Player and Markers”.
	[image: [Note]]	
	Is not possible to submit partial forms. If you compile a partial form, switch to
 the note view and submit a note, the scores already compiled will be lost.

12.3.4. Grading over HTTP access

Is possible to grade a particular call through an HTTP request to the QueueMetrics
server with an URL specifically formatted for this purpose.
When an URL is typed in the browser, QueueMetrics redirects its output to the
login page (if required) where the user could log in to continue.
QueueMetrics shows the grading input form in the browser window and the
user can grade the call and/or add notes to it.
The URL to be used to trigger the grading procedure should follow the syntax below:
http://qmserver.corp:8080/queuemetrics/qm_qa_jumptogradepage.do?
 QAE_astclid=1286184814.122
 &QAE_queue=queuename
 &QAE_formName=FormToBeGraded
 &QAE_CallStartDate=2010-10-04.11:00:00
(of course the URL should appear all on one line).
In the example, we trigger a grading procedure on the host qmserver.corp
on port 8080 The context is queuemetrics (but could change based on local install).
Then there are some parameters following:
	
QAE_astclid : specifies the Asterisk unique id for the call to be graded

	
QAE_queue : specifies the queue name where the call has been taken

	
QAE_formName: specifies the name of the form to be graded

	
QAE_CallStartDate: specifies the day where the call has been taken.
 The value should be formatted as YYYY-MM-DD.hh:mm:ss and should
 represent the time before the call (it’s not important to specify the
 exact time where the call has been taken but it’s important to specify
 a time near the period before the call).

12.4. Removing QA forms

Since version 1.7, users holding the key QA_REMOVE can delete a form.
When a form is deleted, their content is dumped on the Audit Log.
All accesses on deleted forms are highlighted by a special message shown in the
form.
After deleting a form, it is again possible to grade a call as if
it was never graded before.

12.5. Running QA reports

In order to run QA reports, you must go to the main page of QM and click on the "Run QA
forms" label.
[image: ./Pictures/image110.png]

The system will show the following form:
[image: ./Pictures/image112.png]

The parameters have the following meanings:
	
Form is the name of the form you want to run a report for

	
Queue can be one or more queues. You can the run different
 reports for different queues, or use a
 catch-all queue

	
Agent is an optional Agent filter

	
Location is an optional Location filter

	
Agent Group is an optional Agent Group filter

	
Grader is an optional parameter that filters by the person
 who compiled the form

	
Supervision is an optional Supervisor filter

	
Outcome is an optional call outcome code filter

	
Start Date and End Date are about the start time of the
 calls which QA forms that will be included in
 the report.

By clicking on "Calculate" or "Show Summary" the actual results are shown.
If you have used Extra Scores (see Chapter 20.9 - Configuring QA forms) within the QA form, the "Calculate" or "Show Summary" will return averages that are higher than 100.
It is also possible to run a report that compares graders to each other -
see Section 13.2, “Grader calibration reports”.

12.6. The main QA report

The button "Calculate" shows a report like:
[image: ./Pictures/image114a.png]

The Tracked calls per agent report shows:
	
The total number of calls that were tracked for each agent

	
The average score for each agent

	
The total number of items that fall into "Exceeds expectations", "Meets expectations", "Improvement
 required" and "Issue" for each agent.

As you can see, the names of each agent are clickable in order to obtain a detail of calls
by agent.
All statistics that are computed per-agent are then recomputed per-queue and per-agent-group.
The Analysts tracking calls reports shows how many calls each
supervisor graded and what was the average score that
this supervisor gave.
Then, for each Section defined in the QA form, you will get the average scores for each
item, plus an average of all average scores in order to point out problems.
If an item is shown in red, it means that such item has been assigned a zero-weight value.
If an item is shown in gray, it means that such item has been set as non scoreable item.
For further information on configuring items within the form, refer to the paragraph xref:Configuring QA items[].
All columns can be sorted by clicking on the item name and all data can be downloaded in
Excel, CSV or XML format.
In order to have a better understanding of what is going on, you can click on an
agent’s name and get the details, as below:
[image: ./Pictures/image116.png]

This shows the details of all calls stored, the number of items for each call that fall
into each grading category, the average rating for each call and the comment.
By clicking on the form icon
[image: ./Pictures/image118.png]
on the right, you can access the QA form that was graded for this calls,
so you can access individual scores and listen to
audio recordings that are related to this form.

12.7. The QA Summary report

The "Show Summary" button shows a report like:
[image: ./Pictures/image117.png]

This report calculates, for each item and for each section in the form:
	
average for the whole form

	
number of calls graded

	
average score and cumulated percentage for each item and section
 that "Exceeds expectations" (the column marked "Best") or "Meet expectations" (Good)
 or "Improvement required" (Ok) or "Issue" (Req.Imp.) (only for scoreable item)

	
average score and number of time each value is found in the reports (only for non scoring questions)

	
cumulated percentage for each item marked as "shortcut"

All values are computed accorded to the currem item weights (only for secoreable items), in case you use weighted items.
The data can be exported to Excel, CSV and XML formats.
On the top right of the report is a box containing the list of levels with related checkboxes. Values shown in the result table are
coloured following the checboxes status. This is usefull to hilite questions where average values fall in a specific set of levels.
The status of checkboxes are persisted through sessions.

Chapter 13. Advanced tracking of agent and grader performance

Advanced tracking of agent performance lets you pinpoint those agents
whose behavior can and should be improved. In order to do this,
a score is created out of multiple items related to:
	
their way each call is handled (e.g call duration)

	
their call performance (e.g. number of sales)

	
QA scores that were given to their calls

As the scoring is in itself quite complex and made up of multiple factors,
scoring is based on a rule set that represent a business-specific set of
targets that should be met. For each rule, you have two possible levels
of non-compliance � that is a yellow and a red threshold. Each threshold can,
in turn, have a peculiar score associated.
	[image: [Note]]	
	For example, you could say that the expected call duration is
 100 seconds; calls that are between 100 and 150 seconds are "yellow"
 and worth 1 review point, calls that are over 150 seconds are "red"
 and worth 4 review points. The higher your review score, the more prominently
 the agent will be displayed.

When applying a rule set to a set of calls, you get a score expressed
in review points for each agent selected that represents the sum of
all anomalies as detected by the chosen ruleset.
The system then displays the agents involved in reverse score order, prompting
the grader to investigate further by accessing the set of calls and the set
of QA records and the relevant audio recordings.
The result of this activity is:
	
In-depth knowlegde of agent performance

	
Agent life cycle management: the grader can move agents between
 agent groups, so that you can manage a process where an agent
 belongs to multiple skill groups during their lifetime

	
Continuous improvement of agent performance through agent tasks, e.g.
 coaching sessions, or completing Commputer Based Training to improve
 the agent’s skills.

For example, an agent could start her life as member of the group New Hires.
When reviewed after a while, she could be moved to New Hires Probation when she
is found lacking in some subject. After a while she could be checked again
and moved back to New Hires.
As collateral features, the system also offers facilities to:
	
Create rule sets based on the average properties of a set of calls.
 This makes it easy to have reference points that can then be manually edited.

	
Track the lifecycle of agents. This is done by tracking the different agents groups
 each agent has been a member of and the time period they have been there.

Just like for agents, there is also the problem of comparing graders to each other,
in order to have a "fair" view of what is going on and to make sure that grading
happens under the company’s guidelines and not each grader’s own preferences.
Grader calibration reports fulfill this purpose by comparing graders to each other.
13.1. Tracking agent performance

For users holding the key "QA_PERF_TRACK" a new link appears in the
QueueMetrics home page, as shown below:
[image: ./Pictures/QATrack_menu.png]

When clicking on it, you are lead to the main search page:
[image: ./Pictures/QATrack_search.png]

This page lets the grader search for a set of agents to be reviewed. This requires setting three search dimensions:
	
A queue (or set of queues) and a time period

	
A way to search for a set of agents (a specific one, or a group,
 or a location, or all agents that have the same supervisor).

	
A QA form to be graded

	
A rule set that applies to the above search and defines scoring. You should define
 your own before you start this activity (see Section 21.10, “Defining agent performance rules”).

The scoring rule is usually associated to a particular queue and form but the
user can override this selection by checking the option "Override queue and form selections"
and by specifying other parameters that affect the calculation, like:
	
the minimum expected score,

	
the minimum number of calls that should be analyzed,

	
the minimum days the agent had to be in the group at the run period specified for the analysis.

These minimums are to avoid considering agents that are undersampled (e.g. if an agent has been
scored only once, we can expect this score to be less meaningful compared to an agent whose score
is based on 10 elements).
The button "Search" starts the calculation process and a new page will be displayed:
[image: ./Pictures/QATrack_ag_list.png]

The items shown here are averages on all the calls that were found in the current set.
The selected score rule is used to compute the overall Score value, and agents are shown
sorted by their score in descending order.
Flying with the mouse over the score value a detail rules contributing to the overall score are shown,
as reported on the picture below:
[image: ./Pictures/image317.png]

At the bottom of the main table result, a second table shows the agents (if any) that were
not included in the report and the threshold that was not met.
Clicking on the agent name or the associated score value the user gives access to details. They are reported
in a different page, like the one shown below.
[image: ./Pictures/perftrack_drilldown.png]

The details page is split in two parts. The top part reports the score details for
each call the agent answered. The bottom one shows the detailed history associated
to that particular agent.
[image: ./Pictures/QATrack_ag_history.png]

Each line in the top table reports the score calculated by the rule
selected in the search page without being averaged, and other relevant information for each call.
An icon representing a pencil is shown if the call has a QA form associated with it;
by clicking it, the associated QA form will be shown in a separate pop-up dialog.
Users allowed to grade calls could find a set of grayed out pencil icons to be used to
score new calls from this page. After scoring each call they should press "Refresh"
to have the page updated.
A special icon is assigned to Flunked calls. A call is defined as Flunked if the related
QA Form has been graded but reached an average value below the Issue level.
13.1.1. Dynamic drill down

To make the grader’s life easier in case the set of calls to be analyzed is large,
it is possible to use a set of dynamic criteria to reduce the data that is
currently displayed.
The table on the top-right lets you add up to three drill-down rules being active at
the same time. Rules can be quickly disabled by clicking on the "Turn off" checkbox
on the left of each rule.
	[image: [Tip]]	
	The title of the section shows the total number of calls found for the
 agent and the number that is actually displayed. The ones that are not
 are the ones that are filtered out. In order to see them all again, just clear or
 turn off all the filters.

The following rules are defined:
	
Call length

	
A form’s average score

	
The performance tracker score

	
The call outcome

	
Whether the call is a Flunked one, or a Sale, or a Qualified Contact, or a Contact

Special notes about rules:
	
If you enter multiple rules at once, they are all active

	
Rules expecting a time duration (e.g. call length) will accept input as H:MM:SS (e.g. 0:23)
 or an integer number of seconds.

	
Rules working on a float value have the float value converted to the nearest integer and
 then the rule is applied.

It is always possible to sort data in the call list table by clicking on the title.

13.1.2. Taking remedial actions

By the bottom of the page, the grader can take remedial actions using the form
displayed below.
[image: ./Pictures/QATrack_ag_actions.png]

Move the agent to a different group

In order to move the agent to a different group, the grader has to select
the new group through the dropdown; he can specify a reason in the lower
text box then press the OK button on the right side of the dropdown group.
If the user checks the "Remind me" checkbox before pressing the OK button,
QueueMetrics will send a reminder task to the grader himself that will be
displayed after a specified number of days. (This can be used as a reminder and is optional).
A new row with the operation details will be inserted in the agent’s history table
after completion.

Send a CBT to the selected agent

In order to send a CBT (Compute Based Training) to the selected agent,
the grader has to insert a text title in the CBT text box and a valid
URL in the Reason text box, then has to press the OK button on the right side of the CBT text box.
A new Teaching task will be sent to the agent with the title and the inserted URL.
A new row with the operation details will be placed in the history table after completion.

13.2. Grader calibration reports

This is a separate, one-page report that is only accessed by supervisors
earmarked by the key "QA_CALREP" only (in addition to "QA_REPORT").
To access the page, you go to Quality Assessment → Run QA Reports
and fill-in the form by the bottom of the page :
[image: ./Pictures/MCR_search.png]

You will also use the form by the top of the page you usually use for QA reports.
On the input page you select:
	
A date range (dual selector plus predefined periods)

	
One Form (if we had an option for All, we’d get way too many)

	
A queue or composite queue

	
A call outcome, or none for all calls

	
It is possible to select an agent group as an additional filter.

	
It is possible to add a minimum threshold of graded calls per grader
 to be included

The analysis happens at three levels:
	
The whole form

	
The section level

	
The question level

For each form/section/question, a table is computed for the general and
for each agent that has graded at least X items:
[image: ./Pictures/MCR_res_top.png]

[image: ./Pictures/MCR_res_btm.png]

For each form/section/question, an average is computed and compared to the one
of all graders who graded at least X calls in the specific area. This way it
is easy to spot trends and anomalies on grading behavior.
Values shown in gray refers to non scorable questions. Average for this type of
questions is counted only for reference purposes.

Chapter 14. Payroll data in QueueMetrics

Starting from QueueMetrics version 1.6., QueueMetrics is able to produce extensive payroll
information suitable to be exported to a third party application.
QueueMetrics is able to extract most of the data required for payroll generation from the agent
sessions information reported by QM. Through some special pages a supervisor can edit and correct
that information before exporting.
14.1. How it works

Payroll is based on agent sessions and is displayed a as separate "micro-application" within QM,
available only to agents holding a special key. Each agent has a specific payroll code associated
through the agents configuration page. This payroll code identifies the agent in the payroll generated
data file.
To Supervisors that can access to payroll subsection will be shown all "punch times", for a given period of time,
with the opportunity to zoom in, display incomplete sessions and display sessions for one specific agent.
Supervisors holding a second special key are allowed to correct - enlarge or restrict - agent sessions,
given a set of rules that avoids overlaps with other agent activities, to be further specified.
A third key allow "enlarging" agent sessions, i.e. causing the cost to be more for the call center.
Payroll extraction is just manual: the user should inspect payroll data and download payroll trace files,
to be loaded into external WR Timetracker for further processing.
Supervisors are able to see all punches and/or to filter out some of them by agent group and/or location.
All activity is logged into the QueueMetrics log subsystem.
Payroll information generated by QueueMetrics is based on a specific output file format:
	
ADP "punch files", that basically handle the time an agent has been available under ACD

but the underlying structure let us able to expand the file format selection by implementing a specific
file writer.
To summarize, here are the keys that limit user’s permissions when working with Payroll:
	
Users allowed to check the payroll page will be marked by the key PAYROLL

	
Users allowed to edit the queue_log records will be marked as QLOG_EDIT

	
Users allowed to edit session data by making it longer will be marked
 by QLOG_LNGR (they must hold QLOG_EDIT as well).

All queue_log editing is tracked and logged.

14.2. Payroll web pages

The payroll process happens on the following web pages:
[image: ./Pictures/image300.png]

The Search page is linked from the main QM page.
[image: ./Pictures/image301.png]

14.2.1. The search page

The search page lets a supervisor search for session activity.
[image: ./Pictures/image302.png]

The page lets you select a time interval, or choose one of the pre-selected time intervals.
It also lets you filter by one criteria of the following ones:
	
Location

	
Agent group

	
Supervisor (a button "me" is available if the user is a knows supervisor, and will pre-select the current supervisor)

14.2.2. The Sessions page

The payroll extraction page lets you preview the data that will be downloaded in the "punch" format.
If you click on an agentâ��s name, then you will be lead to a page where all sessions
for that agent will be shown for the specified time interval.
[image: ./Pictures/Payroll_p1.png]

The table can be exported as Excel/CSV/XML, as all other QM tables.
Next to the agent name, if present, is an icon that displays the current Agent group. If there is a
payroll note for the agent, a yellow icon is displayed by the end of the row.
The button "Export now" lets you download the "punch" data file, in the format specified on screen.

14.2.3. The Agent detail page

On the Agent detail page all sessions for that agent will be shown for the specified time interval.
Next to the agent name, if present, is an icon that displays the current Agent group.
[image: ./Pictures/Payroll_agdetail.png]

Pause types and codes are displayed, according to the following table:
	
BP: Pause is Billable and Payable

	
BNP: Pause is Billable but not payable (be careful!)

	
NBP: Pause is not billable but Payable

	
NBNP: Pause is neither billable nor payable

A set of payroll notes can be added by the user and read. Notes could also be deleted by a user
holding the proper security key (See Appendix B, Security keys for further information).
If you have the grants to edit a session, by clicking on the icon placed next to the
duration field, you will be able to edit that session.
The table can be exported as Excel/CSV/XML, as all other QM tables.

14.2.4. The Session editor page

The page displays the information about the selected agent session, and it searches the
maximum/minimum values allowed for starting and ending the session.
[image: ./Pictures/Payroll_editsession.png]

It will be able to change the agent session by entering the new start and end times,
either one or both at once.
	[image: [Tip]]	
	If you need to make a session extend over the midnight, you must enter
 the full resulting date in the format like "2010-11-07 11:03:40"

An error is raised if this makes the session longer and you do not hold
the key QLOG_LNGR).
If the period is invalid, an error will be displayed.
When the changes are applied, the page will reload with the new data

14.2.5. The pause editor page

The page displays the information about the selected agent pause, and it searches the
maximum/minimum values allowed for starting and ending the session.
[image: ./Pictures/Payroll_editpause.png]

This page works exactly like the Session editor, but lets you
set/change the pause code as well.
An error is raised if this makes the session longer or you
change a pause from non-payable to payable without holding
the key QLOG_LNGR.
If the period is invalid, an error will be displayed.
When the changes are applied, the page will reload with the new data
	[image: [Note]]	
	Each time the user asks for a pause modification (either the start/end time, either the pause code)
the system modifies the database information in order to reorganize the pause in a standard format.
The standard format is characterized to have a PAUSEALL, PAUSEREASON, UNPAUSEALL sequence where the PAUSEREASON
is placed one second after the PAUSEALL event. This prevents problems with possible malformed pauses present
in the database. All modifications are logged in the syslog pages with corresponding rollback SQL statements.

14.3. Editing the system queue_log file

When the user asks for changes on a specific agent session statement, QM will try and see if it can find
that session and it is "well-formed". This means that some sessions might not be updateable though they work fine in QM.
Not well-formed sections are, for example, sections where a log-on event is not present,
or overlapped with other events. This could be caused by a not corrected queue log,
following some pbx unavailability or something other.
If the target session is "well-formed", QueueMetrics will try to detect
whether the change causes some havoc with other calls/sessions. If it does,
the change is rejected.
If the target section is well-formed but causes a growing cost f
or the call center, and so requires the key QLOG_LNGR, that key is checked;
if not found, the change is rejected.
14.3.1. Well-formed agent sessions

An agent session is considered well-formed if:
	
At least one line with one of the Agent logon verbs is present at
 the time stamp that is given as the start of the session

	
A line with one of the logoff verbs is present at the time stamp
 that is given at the end of the session,
 with same partition ID as at least one starting line found

14.4. The editing log

All activity details are logged to the master QM log, where they will
be available for inspection though direct SQL access.
The trace log contains:
	
A description of the changes, the time and the user who requested them

	
A sequence of SQL that generates the new session timing

	
A sequence of SQL that is able to restore the records as they were before the change

Chapter 15. Multi-stint calls

In QueueMetrics, we define a multi-stint call as a call that was processed on more
than one queue, with one or more queue terminating it for timeout, transfers or
key exits.
In the standard QueueMetrics reporting mode, this call would be seen as a series of
"lost calls" on one or more queues, possibly followed by a taken call if the
call was answered at all; the system does not notice that those events happened
on the same call.
Running QueueMetrics in multi-stint mode, calls will be grouped together based on the
call’s Unique-ID, and a single call will be rebuilt as a multi-stint call so
that:
	
The call looks like it was handled on the first queue it was presented on; the queue enter time and
 queue position are those of the first queue.

	
The call will be considered "answered" if the last stint is an answered call, "lost" in all other
 cases

	
The wait time will be the sum of the wait times on different queues (if there are intermediate wait
 times, like those for IVR menus, they will not be counted)

	
The talking time and agent taken the call will be taken from the last taken call

	
All stats (number of call, call distribution, etc) will be counted on the new multi-stint calls.

15.1. Limitations and side-effects

Multi-stint calls aren’t for everyone. There are a number of limitations and side effects
you should be aware of before attempting to run QueueMetrics in this mode:
	
Calls are grouped by the Asterisk Unique-ID code; this means that if different call stints happen
 on different servers in a cluster, they will not be grouped together

	
All queues the call passed on must be included in the report. If you include only the master queue,
 stints on other queues will not be seen.

	
Because of the previous bullet, it is usually better to configure separate "wrap up" or "timeout" queues,
 that is, instead of having both a Sales and a Support queue that will send
 people to the General queue on timeout, it would be better to have "Sales" →
 "General-sales" and "Support" → "General-support", even if
 "General-sales" and "General-support" are actually aliases of the same
 queue.

	
All stints of all calls must be included between the
 starting and ending report times. Stints that start before the start data
 or end after it will be ignored.

	
Run time and memory will be comparatively more than a standard analysis, as the grouping and
 additional data stored take their toll on the system

	
Stint-grouping does not work for real-time analysis.

	[image: [Note]]	
	On versions of QueueMetrics up to 1.6.3, calls are filtered by search criteria before being
aggregated in multi-stint mode. This may lead to problems when you want to use filtering criteria
in multi-stint mode, where only some stints match the critera while others does not. T
To avoid this issue, on newer versions of QueueMetrics calls are joined together in multi-stint
mode before criteria are applied to the aggregated results.

15.2. Multi-stint calls in QueueMetrics

If you run calls with multi-stint mode enabled, the string "Multi-stint calls joined
together" will appear on the top panel, and the number of joined together calls
will be shown.
[image: ./Pictures/image119.png]

The distribution of taken calls by stints will be shown in the "Answered calls" tab:
[image: ./Pictures/image121.png]

The distribution of lost calls by stints will be shown in the "Lost calls" tab;
aggregate calls by stints will also be shown in the "Lost Calls" page:
[image: ./Pictures/image123.png]

Details of multi-stints calls are displayed in the call details pop-up,
in a separate tab. See Chapter 5, Showing call details.

Chapter 16. The visitor’s page

If you run a call center, it is sometimes desirable to offer some strangers access to the
system in order to demonstrate the quality of the work you are doing. Of course
you do not want them to access directly the full reports pages, but still you
want them to be able to get a hold of the current activity and, optionally, to
monitor your agents directly, listening to the conversation or having a look at
the agent’s screen.
This feature may be handy, for example, if your call center handles inbound queues
for third party clients. If you let your users access the QueueMetrics server,
they will be able to see your work in real-time. Or maybe you want the
marketing department to check the quality of your work, without giving them a
fully-featured report that may be hard to understand for a complete stranger.
To solve this problem QueueMetrics implements the VISITOR profile; when a visitor logs
on, they see a web page like the following one:
[image: ./Pictures/image129.png]

They can then select one or more queues that they have the privilege to see, and click
on "Show current system activity".
[image: ./Pictures/image131.png]

This page looks very similar to the real-time page, where the calls for the given queues
are shown in real time. If the user is given the MON_AUDIO or MON_VNC keys, he
will have the opportunity to click on the VNC or the unattended audio
monitoring icons and start the procedure exactly the way it happens for the
real-time page.
In addition to the data about the real-time activity, the user will be able to see a report
of the number, average duration and average wait time for answered and unanswered calls on the
selected queue(s).
The page reloads automatically just like the real-time page, or can be reloaded by
clicking on the "Reload now" button.
16.1. Setting up VISITORS in a real life scenario

	
You may be running a number of queues for different clients, and you do not want one client to see the
 others' queues. This is obtained very simply by protecting each queue with
 a different key and then assigning each visitor the correct key

	
You want some visitors to use unattended audio or VNC monitoring. Distribute or revoke the keys MON_VNC
 and MON_AUDIO accordingly.

	
A sample visitor user has been created for the demo database that ships with QueueMetrics;
 it is called demovisitor with password demo. For security reasons, this
 user must be manually enabled in the standard database.

Chapter 17. Using Supervisors

A supervisor, for what QueueMetrics is concerned, is a user holding the key
SUPERVISOR. One such user has the ability to be assigned to the known agents as
their supervisor and to run a report with the additional criterion of filtering
the results for all agents he is the supervisor of. This will work in much the
same way as the current Location reporting.
On the main page and on the Custom report analysis, if a user is a Supervisor, he will have
an additional option: "Run the analysis for my competency". This option will at
the moment be mutually incompatible with Location filtering (if both are
chosen, an error will be shown). The analysis will proceed as usual.
In the real-time page there will be a new toggle button "Competency" to filter agents
by the competency. Even in this case the filter may not be used together with
Location filtering.
	[image: [Note]]	
	For security reasons, this user must be manually enabled in the standard database.

Chapter 18. Automating statistics download: the ROBOT profile

It is sometimes desirable to obtain a snapshot of the reports QueueMetrics produces
at a given moment in time for future access or for uniformity of comparison.
You may, for example, want to store on disk a snapshot of the current daily
activity every day at 19.00, fur future reference.
The ROBOT profile was thought for this purpose: automating access to the wealth of
statistics that QueueMetrics is able to provide.
To set this up, first make sure that you have at least one user holding the key ROBOT that
is used for remote access. A sample user called robot password robot is
provided in the sample database that ships with QueueMetrics.
	[image: [Note]]	
	For security reasons, this user is present in the default database but it must be manually enabled.

Point your browser to the QueueMetrics server with a URL like the following:
http://server/queuemetrics/qm_rep.do?user=robot&pass=robot&queues=q1&period=t0
will download today’s report - the full version - for queue "q1", while the
following one
http://server/queuemetrics/qm_rt.do?user=robot&pass=robot&queues=q1|q2
or, for the ajax based page version
http://server/queuemetrics/qm_rt_ajax.do?user=robot&pass=robot&queues=q1|q2
will download the realtime page for queues "q1" and "q2", and
http://server/queuemetrics/qm_wab.do?user=robot&pass=robot&queues=q1|q2
or, for the ajax based page version
http://server/queuemetrics/qm_wab_ajax.do?user=robot&pass=robot&queues=q1|q2
will download the realtime wallboard for queues "q1" and "q2".
It is then easy to automate this behaviour using an automated downloader, like for example
the wget command in the Unix environment.
The following web parameters are accepted by the qm_rt (realtime page) and qm_rep
(report page) generators:
	Parameter 	Notes 	WAB 	RT 	REP
	user
	The user name. Mandatory.
	X
	X
	X

	pass
	The user password. Mandatory.
	X
	X
	X

	logfile
	The log file to use (with full path). If not defined, the default one will be used.
	X
	X
	X

	queues
	One or more queues to be analyzed. Use the pipe symbol to separate multiple entries. Use the Asterisk name for each queue.
	X
	X
	X

	reportname
	The wanted dynamic report name. If this parameter is not specified, the default report will be shown. If the report name contains special characters, they should be properly encoded (for example with %20 for spaces)
	
	
	X

	period
	The time period to use. Composed by a single letter plus the number of days to report about. t0: today - t1: yesterday d1: last 24hrs - d2: last 48 hrs
	
	
	X

	filter
	A single agent’s name, like Agent/123, that will be used a s a filter for the analysis.
	
	
	X

	t_from
	Initial time, expressed in the format yyyy-MM-dd.HH:mm:ss, e.g. 2006-01-03.12:00:00.
	
	
	X

	t_to
	Ending time, expressed in the format yyyy-MM-dd.HH:mm:ss, e.g. 2006-02-04.03:00:00.
	
	
	X

	reloads
	Always set to 1 if the session is to generate a reloadable page. Do not use for general report extraction.
	X
	X
	

If you run a report, a time interval must be specified, i.e. you have to supply either a
"period" or a "t_from"/"t_to" couple.
In addition to the key ROBOT, your user will need the key QUEUE_AN for reporting and
REALTIME for realtime monitoring.
18.1. Generate PDF and XLS reports and send them by e-mail

By using the ROBOT profile is possible to generate PDF and XLS reports and send them to a list of e-mail recipients. The report
parameters, like queue, period, report set and the list of recipients should have been already defined in the
Report ExportConfiguration pages
Section 21.13, “Report ExportConfiguration pages”.
	[image: [Note]]	
	To generate the PDF and XLS reports the ROBOT user should hold the USR_REPORTS_EXPORT key and all optional security keys assigned to
each export job.

Reports are generated by downloading the following URL (you will probably use wget or a similar tool, and will script this as a cron job
so that it will be run daily or weekly):
http://server:8080/queuemetrics/qm_export_stats_run.do?username=robot&password=robot&exportId=X
where the exportId X parameter is the job number identifier that could be found on the Report ExportConfiguration pages
Section 21.13, “Report ExportConfiguration pages”.
The server generates the required report and send it to a list of recipients. It also returns a copy of the generated document.
If you don’t want QueueMetrics to send e-mails but just need to retrieve the file, avoid configuring any e-mail recipients.
If there is an error during the document generation or e-mail sending phase, then an error message is returned instead.
	[image: [Important]]	
	Please note that the some configuration settings are required for QueueMetrics when sending e-mails. Further details
could be found on the System Preferences
Appendix D, System preferences. We suggest turning on SMTP debug when sending your first e-mails to
understand what is going on.

18.2. Setting up a self-service wallboard

By using the ROBOT profile in conjunction with reloads=1, it is quite simple to set-up an unattended wallboard for
QueueMetrics.
First of all set up a low-cost Linux box to boot in its graphical environment, automatically launch a web browser and go to
the following URL:
http://server/queuemetrics/qm_wab.do?user=robot&pass=xxx&reloads=1&queues=q1|q2
or, for the ajax based page version
http://server/queuemetrics/qm_wab_ajax.do?user=robot&pass=xxx&reloads=1&queues=q1|q2
This command will show an auto-reloading wallboard showing the real-time status of queues Q1 and Q2.
If you connect the new Linux box to a large screen or a video beamer and set it in your call-center where it will be visible
by your agents, you have just set-up a wallboard at a very low cost using
commodity hardware and requiring no human intervention but turning it on in the
morning and turning it off in the afternoon.
You can do the same with the real-time screen by using the qm_rt.do or the qm_rt_ajax.do commands to
create a very simple real-time monitor running all day long for your
supervisors.
	[image: [Important]]	
	Please note that there is a difference between results produced by the XML rpc realtime calls and the realtime statistics produced through the QueueMetrics GUI when the key realtime.members_only is equal to true. The difference is related to the agents list shown. Being the list of queues, in the XML-RPC call, specified by a list of names instead of a list of queue unique identifiers, is not possible to correctly identify elementary queues from macro queues having the same name. In this situation the agent list will always be calculated as sum of all agents associated to all elementary queues composing the macro queue, even if the macro queue has directly assigned agent.

Chapter 19. Storing queue data on MySQL

QueueMetrics lets you store the queue_log data on a MySQL table and is able to produce the
very same analyses - including real-time analyses - from data stored on a
database.
This scenario is mostly useful for large call centres, where the queue_log data
starts to be quite large and the main Asterisk server is quite busy handling
its own traffic. In this case, it would be a better solution to have QM run on
a separate server, so that even if it has to run a huge analysis the main
Asterisk server will not be slowed down.
QM lets you have a deployment scenario like the following one:
[image: ./Pictures/image133.png]

In this case, we see that we are using two separate servers; one for the database and
one for the QueueMetrics server itself. It is possible to use the same server
for both the database and QM, or to consolidate the database on an existing
database server and QM on an existing servlet container.
It is very important that all the servers share the same system time; this way real-time
events will be shown in an exact way [1]
19.1. Who should use MySQL storage?

MySQL storage is useful in the following scenarios:
	
Large call centres with a very busy or mission-critical Asterisk server

	
Large QM reports run very often

	
A large number of agents reloading QM agents pages

	
Clustered call-centres monitored by a single QueueMetrics instance

In smaller environments (up to 10 agents), it is probably overkill to use MySQL storage,
because the extra complexity will not be matched by an extra performance
advantage.

19.2. Understanding MySQL storage

The QM database storage engine was built with a need to adapt to existing MySQL
schemas; therefore the database storage option is very flexible.
It lets you:
	
Define the names of each SQL field

	
Define the name of the SQL table used (it must reside in the same database as the other QM tables)

	
Define one or more table partitions

The storage system makes no assumptions on the underlying field layout of the table used,
therefore you are free to define each field as you best see fit for your
scenario.
To obtain these results, the SQL settings are divided into presets and partitions.
A preset is a schema definition to be used, i.e. the names of each field involved in database storage. You can have a
number of different presets, e.g. to connect to different tables in the same
database. Presets are defined in the WEB-INF/configuration.properties file.
A sample preset can be seen here:
Preset 1: standard DB access. Edit to suit your DB needs.
sqlPreset.1.table=queue_log
sqlPreset.1.f_time_id=time_id
sqlPreset.1.f_call_id=call_id
sqlPreset.1.f_queue=queue
sqlPreset.1.f_agent=agent
sqlPreset.1.f_verb=verb
sqlPreset.1.f_partition=partition
sqlPreset.1.f_data1=data1
sqlPreset.1.f_data2=data2
sqlPreset.1.f_data3=data3
sqlPreset.1.f_data4=data4
sqlPreset.1.f_incr=unique_row_count
You can have more than one preset, by entering the same data multiple times under
sqlPreset.1.., sqlPreset.2.., sqlPreset.3.. and so on.
The values for each field are:
	
Table is the table name

	
Time_id is the first field in the queue_log. This is used for most extractions and
 should be an access key.

	
Call_id is the second field of the queue_log

	
Queue is the third field of the queue_log

	
Agent is the fourth field of the queue_log

	
Verb is the fifth field of the queue_log

	
Data1..Data4 are the remaining fields of the queue_log. Currently Data4 is not
 defined in the queue_log; in case just leave it blank.

	
Partition is a logical partition of the table.

	
Incr: as the minimum time detail for Asterisk activity is by the second, it is
 possible that events that happen on the very same second seem to happen in
 the wrong, meaningless order when the data is read back from the database.
 It is possible to define an auto-increment field on the table that is used
 to make sure that rows are fetched from the database in the same exact
 order they were inserted into. This table definition is the default for QM
 since version 1.1

A partition is a key under which separate entries are
present in the same queue_log table. You could have separate servers - like
test and production - uploading each one to a different partition, and each of
them would be completely independent. This is also used for clustering
scenarios, where a number of different Asterisk server upload data to the same
database.
If you use a partition, your partition/time_id
combo should be an access key for the table, as QM will access the table every
time under this plan.
If you do not use a partition, just leave this field blank and make sure that time_id is
an access key for the table.

19.3. Uploading data to MySQL

There are a number of ways for data to be uploaded into MySQL. If we plan to use the
real-time monitoring features, we must upload data to MySQL as events happen,
in order to have them seen immediately by QM.
We have developed a very safe script suitable for small to very high volume for high-volume
production systems called qloaderd. It can be easily started and stopped from the init.d
commands and comes complete with start-stop scripts. Its main advantages are
the following:
	
Extra safe: will check for duplicate lines in the database

	
Extra safe: will retry loading data on MySQL connection errors

	
Creates a full import log

	
Can be started/stopped as a standard system service

You can find it under the WEB-INF/mysql-utils/qloader;
do not forget to read the installation docs that are in qloader-README file and to use the correct init-script for your
system.
	[image: [Note]]	
	Starting from QueueMetrics 1.7.0b8 the qloaderd provided with QueueMetrics is no more compatible with
previous QueueMetrics database versions. In order to have it working with previous QueueMetrics installations
a database modification should be applied. This is limited to adding a new field data5 on the queue_log table.
The new data5 field should have properties like other dataX fields already present in the table.

In the future, we expect Asterisk to be able to write queue_log data straight to a
database via ODBC, so these tricks will not be necessary anymore.

19.4. Loading data in QueueMetrics

After you configured the table in configuration.properties,
using the table is only a matter of inputting
 sql:[partition]|[preset]
as the queue_log file name to analyze.
The partition defaults to "" (blank) if absent, while the default preset is 1.
You can do it directly from the "Run custom report" form, or preset the file name in configuration.properties as you best see
fit by setting the default.queue_log_file
property.
Examples:
sql:P03
Means accessing the partition named "P03" for preset #1.
sql:X23|3
Means accessing the partition named "X23" for preset #3.
sql:|2
Means accessing the present #2 with no partition, and
sql:
Accesses preset #1 with no partition.
If you use agents pages, keep in mind that the value in realtime.max_bytes_agent will not be the portion of the queue_log
to be read, but the time interval (in seconds) that will be read for the current
agent (i.e. if set to 10000, it will search agent data for the last three hours
or so).
When you enter a "sql:" file name, the error "The file sql: does not exist" means that
there is a misconfiguration of the table access fields in configuration.properties.

19.5. Checking MySQL database status

As it is not very immediate to "see" if a partition is being loaded and how much
information is available on the database, we provide a "Mysql Storage
Information" page (accessible from the main "Edit settings" menu if the user holds the key USR_MYSQL) that provides
general database information.
By clicking on the link, a new page will be loaded showing the available partitions; by
clicking on the "Details" button, information for the chosen partition is
extracted.
[image: ./Pictures/image135.png]

The total number of rows in table and the total table space is shown; for each partition,
its minimum and maximum data entries and its "heartbeat", that is fake entries
that the qloaderd process will add to notify the server that the connection is
still alive even if Asterisk is producing no data.
The "number of calls" is a very rough estimate
with no logic in it - it may differ a lot from the actual data calculated by
reading the log. Only its order of magnitude should match the other reports.
For each partition, all distinct agents and queues are reported, and their first and
last appearance on the database. The "Days" is the time difference in days
between the first and last reference.
Please not e that accessing this page causes a number of table-scan queries to be
performed on the MySQL table - the page might become irresponsive or MySQL can
be slowed down if your queue_log table is very large.

19.6. Optimizing the queue_log table

If you do a number of deletes followed by inserts on the queue_log table, for example
because you manually delete a partition and upload data in another one, the
table access plan may become sub-optimal and performance may suffer. The same
happens if you upload multiple queue_log instances at once to different
partitions, for example if you run a cluster.
In this case, you can manually run the following MySQL query to optimize the table:
ALTER TABLE queue_log ORDER BY partition, time_id, unique_row_count
This might take a while to run and may lock your table until it’s complete. It is not
necessary to run this query if you only upload data without ever deleting it
for one single partition.
If you run a busy cluster, running it daily at a scheduled, off-peak time might produce
the best results.

19.7. Using the Asterisk Realtime QueueLog subsystem

Since Asterisk 1.6.x and QueueMetrics 1.6.0 it is possible to delegate the queue logging to the Asterisk Realtime subsystem.
With this option the QueueMetrics MySQL database log will be replaced by the MySQL database populated by Asterisk.
	[image: [Caution]]	
	As it is way more likely that a database will be temporarily down versus a simple text file, we
 generally suggest using the flat-file queue_log logging plus qloaderd, that is optimized to avoid
 any possible data loss in cases of MySQL unavailability.

As the procedure to follow is different based on the version of Asterisk you are running, please check the Asterisk
version before continuing.
In any case, as a first step you need to enable the Asterisk Realtime QueueLog subsystem, as reported
in http://www.voip-info.org/wiki/view/Asterisk+queue_log+on+MySQL.
As Asterisk will be logging data to its own database, it is of paramount importance that:
	
The Asterisk database is kept on the same MySQL server as the QueueMetrics database

	
The user (generally queuemetrics) that Qm uses to connect to the database has read grants on Asterisk’s database

This can usually be obtained by issuing an SQL command like:
GRANT ALL PRIVILEGES
 ON asteriskdb.queue_log
 TO 'queuemetrics'@'%'
 IDENTIFIED BY 'javadude';
Please note that, if the Asterisk Realtime QueueLog subsystem is used, the qloader process is not needed anymore.
Also, as the default Asterisk tables have no concept of "partition", a placeholder partition ("-") is used instead.
19.7.1. Realtime on Asterisk 1.6

First you need to change the default.queue_log_file key, in the configuration.properties file, in order to have something like that:
default.queue_log_file=sql:-|a16
This tells QueueMetrics to instantiate the proper Asterisk realtime analyzer and to read, in this case, the preset called a16. You need
to add it to the configuration.properties file as follow (if it is not present):
sqlPreset.a16.table=asteriskdb.queue_log
sqlPreset.a16.f_time_id=time
sqlPreset.a16.use_timestamp=true
sqlPreset.a16.f_call_id=callid
sqlPreset.a16.f_queue=queuename
sqlPreset.a16.f_agent=agent
sqlPreset.a16.f_verb=event
sqlPreset.a16.f_partition=
sqlPreset.a16.f_data1=data
sqlPreset.a16.f_data2=
sqlPreset.a16.f_data3=
sqlPreset.a16.f_data4=
sqlPreset.a16.f_data5=
sqlPreset.a16.f_incr=id
This defines the table structure (and name) QueueMetrics will expect to find and must match the Asterisk realtime database definition.
	[image: [Note]]	
	The "table" entry is made up of the name of the Asterisk database followed by a dot followed by the name of the queue_log table.

Optimizing access performance

Thought the basic table definition will work out-of-the-box, QueueMetrics relies heavily on database access in order to produce
any output. It is therefore important to issue the following statements on the Asterisk database so that its table is ready for QueueMetrics:
ALTER TABLE queue_log
 CHANGE COLUMN `time` `time` INT(10) NOT NULL DEFAULT 0;

ALTER TABLE queue_log ADD INDEX qm_main (`time`, `queuename`);
ALTER TABLE queue_log ADD INDEX qm_hotdesk (`event`, `time`);
The first statement makes sure that the time column be numeric, and the other two add QM’s main access indexes.

And what about the old access format?

	[image: [Note]]	
	Versions of QM before 1.7.2 used to have the format "astr:" to access the ARA database. This is still present but
we do not encourage using it anymore.

	[image: [Note]]	
	The format "astr:" is deprecated since QM Versions after 14.10.9 and can no more be used.

19.7.2. Realtime on Asterisk 1.8+

First you need to change the default.queue_log_file key, in the configuration.properties file, in order to have something like that:
default.queue_log_file=sql:-|a18
This tells QueueMetrics to instantiate the proper Asterisk realtime analyzer and to read, in this case, the preset called a18. You need
to add it to the configuration.properties file as follow (if it is not present):
sqlPreset.a18.table=asteriskdb.queue_log
sqlPreset.a18.f_time_id=time
sqlPreset.a18.use_timestamp=false
sqlPreset.a18.f_call_id=callid
sqlPreset.a18.f_queue=queuename
sqlPreset.a18.f_agent=agent
sqlPreset.a18.f_verb=event
sqlPreset.a18.f_partition=
sqlPreset.a18.f_data1=data1
sqlPreset.a18.f_data2=data2
sqlPreset.a18.f_data3=data3
sqlPreset.a18.f_data4=data4
sqlPreset.a18.f_data5=data5
sqlPreset.a18.f_incr=
This defines the table structure (and name) QueueMetrics will expect to find and must match the Asterisk realtime database definition.
	[image: [Note]]	
	The "table" entry is made up of the name of the Asterisk database followed by a dot followed by the name of the queue_log table.

	[image: [Important]]	
	As this table format does not preserve the insert ordering when reading, QM may produce incorrect results
 unless you perform all the steps described in the "optimization" section below.

Optimizing access performance

Thought the basic table definition will work out-of-the-box, QueueMetrics relies heavily on database access in order to produce
any output. It is therefore important to issue the following statements on the Asterisk database so that its table is ready for QueueMetrics:
ALTER TABLE queue_log
 ADD COLUMN id INT(10) AUTO_INCREMENT NOT NULL FIRST,
 ADD PRIMARY KEY(id);

ALTER TABLE `queue_log` DROP INDEX `bydate`;
ALTER TABLE `queue_log` DROP INDEX `qname`;

ALTER TABLE queue_log ADD INDEX qm_main (`time`, `queuename`);
ALTER TABLE queue_log ADD INDEX qm_hotdesk (`event`, `time`);
The first statement makes sure that there is an order-preserving index on the table, so that lines that have been inserted in the same second
still hold the original sequence when read.
The second set of statements drops indexes that are not needed by QueueMetrics; and the third set creates indexes that are needed for efficient data
retrieval in QM.
You will also need to change the property:
sqlPreset.a18.f_incr=id
So that the order-preserving index is used by QM.

[1] The ntpdate command can be used on Linux to synchronize
the system clock to an external timing source with a high degree of precision.
Usage in a daily cron script is highly recommended

Chapter 20. Monitoring clusters with QueueMetrics

QueueMetrics is able to monitor clusters of Asterisk servers, in order to monitor large call
centres that are spread over a number of physical machines. This setting is
often used for large deployments, as it leads to a number of advantages:
	
The overall call center is safer, as the failure of one single Asterisk box leads to a down of only
 part of the call center an not its entirety

	
The call center can easily grow to hundreds of seats simply by adding more Asterisk servers, without special
 optimizations or weird configurations

	
There is less risk of a deadlock on one single Asterisk instance, as the load on each box is kept
 low enough not to be a problem

In order to implement this, QueueMetrics has been extended to support the notion of cluster, that is a set of Asterisk
servers working together as if they were one single box. The cluster can be set
up as is better fit, for example:
	
Different queues for each Asterisk box, or

	
The same queues on more than one Asterisk box

	
Some boxes are used for inbound and some for outbound

When QueueMetrics runs in cluster mode, the whole call center is monitored as if it
were a big single Asterisk box, and the basic unit for reporting remains the
set of selected queues. QueueMetrics will internally query the different servers
or queue_log files as needed, and
will automatically dispatch events to the correct Asterisk box.
20.1. Setting up a cluster

To set up a cluster, you should define the following configuration variables in
configuration.properties:
cluster.servers=aleph|trix
This statement tells QM that the current cluster has two members, that are called
"aleph" and "trix". We suggest using a short name for each server, as it will
appear in many different screenshots. One option would be using the capital
letters, like ""A", "B", "C" etc for different members of the cluster.
For each server (in our case "aleph", but we’ll have to repeat it for all members of the
cluster), we will define the following properties:
cluster.aleph.manager=tcp:user:pass@10.10.3.5
This tells QueueMetrics that the manager interface for aleph can be found at 10.10.3.5,
logging in as "user" with password "pass". The manager interface is needed to
run Live monitoring and can be used to run commands to Asterisk (like logging
agents on and off, starting chanspy sessions, etc).
cluster.aleph.queuelog=sql:P001
This tells QM that the queue_log file (or its contents) can be downloaded from partition
P001 of the QM database. You must use MySQL storage in order for clustering to
work at all.
cluster.aleph.monitored_calls=/share/aleph/calls/
This tells QM where to look for recorded calls on each Asterisk server. This is used by
QueueMetrics in order to click-and-listen to recorded calls. A NFS or SMB share
is usually a good starting point. As an alternative, you can enter the URL of
an XML-RPC server that will return information about the recorded call (for
more information on this topic, see Section 24.11, “Enabling XML-RPC call listening and streaming”).
cluster.aleph.callfilesdir=/share/aleph/callfiles/
If you do not want to connect to your Asterisk servers using the manager interface, you
still need a way to send it commands (e.g. to start a chanspy session). In
order to do this, you should give QM a directory to write callfiles to. If you
use the manager interface, leave this entry blank. (We strongly suggest doing
so and using the manager interface instead).
cluster.aleph.audioRpcServer=http://myserver/xmlRpcServer
If you use an XML-RPC "broker" in order to used live calls listening using a third-party
software like Orecx, you should enter its URL here. This must be activated at
once for all servers by not leaving blank in the property
default.audioRpcServer. In all other cases, just leave this property blank. (for
more information on this topic, see Section 24.11, “Enabling XML-RPC call listening and streaming”).
cluster.aleph.agentSecurityKey=AAA
When using the agent’s page in cluster mode, you must make sure that each agent "points"
to the correct server, as this server will be used for both pulling agent’s
data and sending logon/logoff commands. This is obtained on the agent’s page
through a pull-down menu where the agent must select the correct server he’s
logged on to. In order to avoid mistakes, it is possible to protect a server by
adding a security key, so that only agents having that security key will see
that server. If an agent has only one possible server, that server will be
automatically selected. In practice, this means that you could create two agent
classes, we call them AGENT_A and AGENT_B. They have the same keys, but in
class AGENT_A there is the key SERVER_A, and in the other SERVER_B. We protect each
server entry with SERVER_A for the first and SERVER_B for the other. Then we
assign users to classes AGENT_A (for agents working on the first server) and
AGENT_B (for agents working on the second server). If you want agents to
manually switch servers, or your cluster is made up of only one machine, leave
this blank.

20.2. Setting up the members of the cluster

On each box that is a member of the cluster, you should set up the following items:
	
Call recording: if calls are recorded to be played back through QueueMetrics, you
 should store them all in a directory that is accessible through the
 QueueMetrics server, or set up an external XML-RPC call broker.

	
Commands: if commands are to be sent to each Asterisk box, you should set up the [queuemetrics] context in the dial plan,
 and make sure the manager interface is set up or the /vars/spool/asterisk/callfiles directory is shared and
 accessible to the QueueMetrics server. A sample [queuemetrics] context can be found under WEB-INF/mysql-utils in the directory extensions-examples.

	
Logs: you should use qloaderd to
 upload data to a partition on the main QueueMetrics database. Make sure
 that each server uploads data to a different partition in the same
 database.

	
Clock: make sure the clocks on all members of the cluster is synchronized, and
 the same goes for the clock used on the QueueMetrics box and on the MySQL
 database. An utility that sync your machine’s clock to an external timing
 source like ntpdate will take
 care of this problem if run periodically through cron.

20.3. Setting up QueueMetrics to access the cluster

First thing, you should make sure that you have a clustered license for QueueMetrics
and that your license is big enough in terms of agents to support all agents
that are present in the call-center. Older licenses are valid for one Asterisk
server only and QueueMetrics will complain they are not correct. The first
releases of QueueMetrics 1.4 will anyway allow accessing a cluster up to a
specified future date (likely October 2007).
To report on all members of a cluster, you should set the property:
default.queue_log_file=cluster:*
This means that all boxes defined as members of this cluster will be used a s a data
source.
To report on a subset of the members of the cluster, you will use a syntax like:
default.queue_log_file=cluster:A|B|C
This way you will be reporting on boxes A, B and C.
If you want to report only on a single box, the syntax:
default.queue_log_file=cluster:C
Will be appropriate.
You can then change this property on-the-fly by going to the "Custom reports" page and
editing as needed under the "File" text box.
If you have agents using QueueMetrics’s Agent’s pages, you should set them up so that each
agents points to its correct server.

20.4. Using the Agent’s page with a clustered environment

The agent’s page on QueueMetrics acts as a kind of portal for an agent; she can use it to
log on, log off, go to pause, enter pause codes, launch external apps linked to
a call (e.g. CRM apps) and enter call codes (see The real-time agent page).
As the number of agents can be very high if
compared to the number of supervisors who run reports or monitor the call
center, QM uses a "minimal impact" policy: the page must be refreshed manually
by each agent in order to avoid hammering the server with repeated page hits
and the analysis run is a stripped-down, low-fat version of the full analysis
QueueMetrics is able to perform. When coming to clusters, this means that to
avoid useless load, calls for an agent will be searched only on the server the
agent is working on and not on the entire cluster.
Also, we have the problem of defining where an agent is supposed to work: as QM can
issue commands to Asterisk on behalf of an agent, it needs to know to which
Asterisk server those commands must go. This is obtained by using the Server
selection that will appear on the agent’s page if QueueMetrics is running in
clustered mode. If more than one server is selectable, the combo box will let the
agent switch server as she best sees fit (if only one server is selectable,
QueueMetrics will use that server immediately and will make the combo locked).
As a QM installer, you can control which servers are selectable to which agents by
setting the properties cluster.---.agentSecurityKey
correctly for each Asterisk server in the cluster.

Chapter 21. Editing QueueMetrics settings

System configuration must be done by the system administrator. Most configuration may
be done straight from QM itself, while system wide preferences must be set
editing a text file on the installation server.
To log on as an administrator, you can use the supplied account demoadmin, password demo,
that will bring you to a home page like the following one:
[image: ./Pictures/image137.png]

21.1. Configuring users

Users and classes can be added, modified and deleted right from QM.
A list of users is presented and you can filter it by class or user name.
[image: ./Pictures/image139.png]

For each user, the login and full name are shown, together with the current class and
any additional user keys. A user must be enabled in order to log on, so if you
want to prevent somebody from logging on without deleting its user information,
you can simply disable it. A number of default users are shipped with Enable: No in order to prevent unauthorized access.
The list of users is paged and you can use the top box named "Filter" in order to search
for a specific user or a set of users that match the entered substring. You can
also click on the column name to toggle ascending versus descending sort order.
The "Create new" button lets you add new users while the "Show classes" button leads to the
class editor.
[image: ./Pictures/image141.png]

When you add or edit a user, you are presented with a list of fields to enter:
	
Userid is a technical reference used internally. Read only.

	
Login is the login string.

	
Password is the password, shown in clear text.

	
Real name is the name shown in the top part of the screen

	
Enabled lets you temporarily disable somebody from using QM.

	
E-mail is the user’s e-mail address (Optional).

	
Masterkey: if set to Yes, all security key checks are bypassed. DO NOT SET UNLESS YOU
 KNOW WHAT YOU ARE DOING!

	
Class is the current user class

	
User keys are additional keys the user holds. Separate each key with a space. If a
 key is preceded by the minus sign, it means it’s revoked even if the class
 grants it.

	
Number of logons tells how many times the user logged on in QM. Read only.

	
Comment is an optional free comment.

	
Token has no current use. Read only.

	
Creation and Update: the user and date/time when the record was first created and then last updated. Read
 only.

	[image: [Note]]	
	When you first log on to QueueMetrics, you must change the passwords to all default users.
Failure to do so represents an important security breach!

21.2. Editing user classes

User classes can be configured freely; you can create individual key rings with
special privileges to best suit your needs.
[image: ./Pictures/image143.png]

Each class has a set of keys that can be freely edited in much the same way as users by
clicking on the "edit" icon (the pencil).
[image: ./Pictures/image145.png]

No class can be deleted as long as there is at least one user that is member of it.
The default classes should be enough to get most systems started:
	
ADMIN is for the system administrator only, and lets you do nearly everything, including system
 configuration;

	
MANAGERS is for most QM users, the ones that have to run the reports and monitor real-time activity;

	
AGENTS is for individual agents logging on to their web page.

	
VISITORS is for visitors accessing the simplified real-time page

	
ROBOTS is for automated data download

21.3. Configuring queues

A list of queues must be set before accessing QM. Each queue can be made visible to only
a specific set of users by adding a key - this can be useful if, for example,
each queue has a manager viewing data for it, while only a CC manager sees data
for all queues in the center.
[image: ./Pictures/image147.png]

You can search for a specific queue by entering data into the Filter box on top of the
page, or change the default sort order for the list by clicking on one of the
column names.
The default page shows:
	
The queue Alias and Composition

	
The Wrap and Announcement durations

	
The key protecting the queue, if any

	
FP - Front Page: Whether that queue will be visible from the queue selection boxes

	
The number of known agents that are member of the queue, by service level (as Main - Wrap - Spill).

The pencil icon will let you edit the queue, while the "People with pencil" icon lets you
change queue associations.
The pie chart icon at the end allows to define/assign the set of queues on which agents can run reports. No specific key or property are required, but this feature is only available as of QueueMetrics version 12.10. For an administrator to make this feature available for the agent, it is necessary to have at least one queue and a report assigned to the agent. See also Section 21.12, “Configuring reports” for further details.
[image: ./Pictures/image149.png]

[image: ./Pictures/image151.png]

For each queue you have to define:
	
An Alias, that is the name users will see in the queues combo box
 on the Home Page;

	
A set of Queues, that can be the name of an Asterisk queue as seen from
 the Queue() command or a set of names separated by the pipe symbol, as in queue1|queue2|queue3. This lets you
 aggregate queues freely. You can also use the * and ? wildcard symbols
 (see below).

	
An optional Wrap-up time, i.e. how many seconds an agent stays idle after hanging up;

	
An optional Announcement duration, that lets you deduce the duration of the queue announcement that is played to the
 agent from the actual metrics;

	
An optional Visibility key, that makes the queue visible only to users holding that key.

	
The Call flow direction, i.e. whether the queue is an inbound
 (classical) queue or an outbound queue (made to track individuals agents
 calling out or the activity of a full-fledged predictive dialler). Select "any call" when you aggregate queues with different call flow settings.

	
If it’s Shown on front page, that is, in the main Queue selector combo box (if not, the queue is said to be invisible).

	
A Chat group, that is, the XMPP address of a queue manager

	
A Default URL to be used on the Agent’s page if no URL is passed in the queue log
 in order to open a third-party application.

The rules followed by QueueMetrics when displaying the icon link (and the associated URL) are as follows.
On the report pages:
A: If the reporting queue is not a composed queue and the queue has an
associated URL (coming from the queue definition page), then this URL is shown.
B: If the reporting queue is a composed queue and/or no URL is associated to
that queue in the queue definition page, then:
B1: If the call has an associated URL in the queue_log, this will be shown
B2: If the call has not an associated URL in the queue_log then the URL
specified in the configuration properties key default.crmapp will be shown. If
no default.crmapp URL has been specified in the configuration properties file,
the icon will not be shown.
On the live agent page:
A: If the queue where the call comes has an associated URL in the queue
configuration page then this URL is shown for each call
B: If the queue where the call comes has not an associated URL in the queue
configuration page then:
B1: If the call has an associatd URL in the queue_log, this will be shown
B2: If the call has not an associated URL in the queue_log then the URL
specified in the configuration properties key default.crmapp will be shown. If
no default.crmapp URL has been specified in the configuration properties file,
the icon will not be shown.
	
A number of Attention levels, see below.

	
The current known Service groups for that queue, i.e. which agents are linked to that queue

	
The current AGAW settings for the queue (see below)

By clicking on the Agents icon, you can define the position of each agent as a member of
the service groups for that key. An agent cannot be a member of more than one
group per each queue s/he is a member of.
[image: ./Pictures/image153.png]

It is of course perfectly legal for an agent defined not to be used in a specific queue.
21.3.1. Setting attention levels (Red and yellow alarms)

It is possible - but not mandatory - to define all or some attention levels for the
given queue. To do so, you have to fill in each queue attention levels
parameter with an expression that will be matched to the current property’s
value in order to trigger a defined alarm.
QueueMetrics does currently allow to set two possible alarm thresholds; that is a "yellow"
and a "red" alarm. You can define one or both of these properties, according to
your preferences. Those values are used currently only to trigger alarms in the
real-time panel.
For example, imagine we want to set a yellow alarm on the queue wait for each call; we want
cells to turn yellow if the wait time exceeds 30 seconds, and to turn red if it
is over one minute. To do so, we enter "> 30" in the yellow alarm box
near to "Call wait duration", and "> 60" in the red alarm box on the same line.
In the case where both yellow and red conditions match, the red alarm prevails.
Currently, the following functions can be used to match a value "=", "<", ">", "!=" (different).
The possible alarms are the following:
	
Number of calls in queue: how many calls are present in the queue.

	
Number of agents on call: how many agents are on call

	
Number of agents waiting: how many agents are idle

	
Number of agents paused: how many agents are on pause

	
Call wait duration: how much a call is waiting before being answered

	
Call talking duration: the duration of the agent’s conversation

21.3.2. Using wildcards in queue names

QueueMetrics allows a limited use of wildcards to group together queue names. Wildcards work
by matching the composition of known single queues, so if a queue is not
defined in QueueMetrics (even if it is present on Asterisk) it will NOT be
matched by a wildcard of "*".
On the other side, a hidden single queue will be matched by a non-hidden front-page
queue whose definition is "*".
With wildcard matching:
	
"" stands for any number of characters. E.g., "open" as the
 queue composition will match any atomic queue starting with "open". Just
 entering "*" as a queue composition will match any atomic queue on the
 system.

	
"?" stands for a single character - e.g. "open?" will stand for "open1" and "openq", but not for
 "open99". You can group together a number of question marks to match
 multi-character sequences of known length, e.g. "open??" will match
 "open99".

21.3.3. Configuring queues to be processed by the AGAW Runner

The AGAW Runner will use the following rules to decide which queues and agents to
process:
	
All queues that are "simple", i.e. not composite, are taken into consideration for
 processing by the runner. All queues that have the AGAW runner enabled
 will be actually processed (you must enable that manually in the queue
 config page).

	
All agents that are linked to a queue are processed for that queue, even if there is no data for them;
 plus, any unknown agent that is detected working on a queue is processed
 for that queue..

In order for a queue to be processed by the runner, and show visible metrics to the
user:
	
The "Will AGAW be run…" must be set to "yes"

	
The Items defined must be > 0 (or the agent will see no metrics)

	
The AGAW enabled should be "Yes"

	
The AGAW look back period can be left blank (default). This is the
 size of the look-back period the AGAW runner uses.

The set of metrics that is enabled and their alarms is defined in the AGAW queue
configuration screen (click on the "AGAW alarms" button):
[image: ./Pictures/image155.png]

As you can see, for each metric there are a couple of switches that decide:
	
Whether that metrics is to be shown at all

	
Red and yellow alarm levels for the whole queue (to be shown in AGAW, so they might differ from the ones used for the real-time page)

	
Red and yellow alarm levels for each agent separately

These settings are applied from the next run of the AGAW runner, so they can be
modified while the AGAW runner is active and will be picked up when the relevant
queue is processed.
All values are always computed; you can toggle visibility of values on and off (if they
are "Off" they are visible in the AGAW monitor but NOT to the user).
Alarms can be expressed as:
	
Integers (for time periods and n. calls)

	
Floating-point values (e.g. > 3.7)

	
Percentages (e.g. > 10%).

While percentages for the Queue part translate to the corresponding ratio (e.g. 10%
means 0.1) in the Agent part they are anchored to the Queue metrics - that is
if number of calls is at a given moment 1000 and there is an agent alarm at
"< 1%" , if the number of calls taken by that agent are less than
1% of the queue the alarm will be triggered.
If you need to express a fixed percentage in the Agent part, use the corresponding ratio,
as in the Qualified Conversion example above.

21.4. Configuring agents

Agents should be configured so that they:
	
are decoded to their own name when they are found in reports

	
can be set as members of service levels for queues.

	
can be assigned an optional Location, that can also be used as a filter condition.

	
can be assigned an optional User Group, that can also be used as a filter condition.

	
can be assigned to a Supervisor

	
can have a VNC URL defined

	
can have a Current Teminal defined.

[image: ./Pictures/image157.png]

When editing an agent, the following screenshot appears:
[image: ./Pictures/image159.png]

For each agent in use, enter:
	
Agent code as the Asterisk agent code, e.g. Agent/101;

	
Agent description as the agent’s own name.

	
Default server: for cluster mode, the default server for the agent. This information is used to pre-populate
 the related field in the realtime agent page logon panel. Leave empty if the agent is not associated to a specific server.

	
Agent location and Agent group can be selected from a drop-down
 list of defined locations. Leave blank if not needed.

	
VNC Monitoring URL: the URL that will launch the VNC monitoring app for the given agent

	
Current terminal: the current terminal for the given agent. If this field is left
 blank, unattended audio monitoring will not work. If you are using
 regular Asterisk agents, just enter "-" as the current terminal to make
 audio monitoring work. This field is used to pre-populate the "Current extension" field
 in the agent real-time logon panel.

	
Instant messenger address: an XMPP address associated to the agent.
 Used in the real-time page for supervisors to initiate a chat with the
 agent.

	
WebPhone Username: the SIP username used by the softphone in the realtime agent page to authenticate the agent

	
WebPhone Password: the SIP password used by the sofphone in the realtime agent page to authenticate the agent

	
WebPhone Realm: The authentication SIP Realm used by the softphone in the realtime agent page to authenticate the agent

	
WebPhone SIP Uri: An optional SIP URI used by the softphone. If blank, the username@sipserver is used

	
Supervisor: the supervisor for this agent. This can be selected between all
 users holding the key SUPERVISOR.

If you want an agent to log on to their own page, you also have to create a user with the
same name.
On the bottom of the page, the current association of that agent to a set of queues is
shown.
It is now possible to add one or more "friendly names" for agents within the "Asterisk aliases" field, which can be found in the Agent Detail page.
The Agent Detail page is accessed by selecting the "Edit agents" link on the QueueMetrics Home page and then clicking on the "Edit" icon for a specific agent.
[image: ./Pictures/friendly_names.png]

21.5. Configuring locations

The following configuration transaction lets you define locations for your agents.
To access this page, a user must be holding the USR_LOCATION key.
[image: ./Pictures/image161.png]

Each location has a short name, a longer description, and a visibility key, so that
only users holding that key may select that location as a source for reports.
[image: ./Pictures/image163.png]

A location cannot be deleted if at least one agent is defined for that location.

21.6. Configuring call outcomes

We define a call outcome as a flag to be added to
a call, either when the call is ongoing or when the call has just finished,
that will signal the result of the call from a business point of view. Such a
flag is optional for QueueMetrics and can be added to both incoming and
outgoing traffic.
The call outcome will be defined by a numeric sequence that the agent will either key in
on their telephone terminal or report through QueueMetrics itself through the
Agent’s page. QueueMetrics will not consider how the sequence is entered, as
long as it’s present in the queue_log
data it runs on. Such records can be generated, for example, by an outbound
dialler that is able to pre-screen answered traffic.
To minimize internal searching costs, the call activity must be entered either while the
call is in progress or within one hour of its completion. If more than one call
activity code is entered, the latest takes precedence over the previous ones.
[image: ./Pictures/image165.png]

As you can see, each outcome can set two flags: a "This call qualifies as contact?", "The
call qualifies as Qualified Contact" and a "This call qualifies as sale?" flag.
This will be used in order to produce statistics on traffic (see section Section 4.12.1, “How are Call Outcomes calculated?”).
If a call code is found but not defined through the configuration screen, QM will report
on it and treat it as a "No contact" and "No sale" call.
[image: ./Pictures/image167.png]

The editor page lets you set:
	
A numeric code for that outcome. The system will check that it will not be duplicated on the list
 (The code should be numeric so it may optionally be keyed-in using the rep’s terminal)

	
A text label for the outcome (e.g. "Contact")

	
A flag telling the system whether that outcome counts as a "Contact"

	
A flag telling the system whether that outcome counts as a "Sale"

	
An optional security key for that outcome. This will be used only when displaying outcome choices for a
 given call in the Agent’s page. The reporting engine will report on all
 outcomes present in its analysis.

	
A Queue visibility list - you can list a set of atomic queues for which this code
 will be displayed. Queues are separated by whitespaces. The field accepts wildcards
 to match multiple queues and/or subqueues.
 If the field is left blank, then the code is displayed for all queues.

21.7. Configuring pause codes

The agent’s time is defined in QueueMetrics as made
up of different activities. The main activity for an agent will be "Available
time", i.e. the time when an agent is ready taking or placing calls. When an
agent pauses out of "Available time", they may want to flag the reason for the
pausing, e.g. doing backend activities, lunch, etc. This way you can track
agent activities punctually. If they don’t flag a pause, it will be computed as
simply "Pause" time.
Each pause code is written on the queue log while the pause in progress, i.e. after the agent
goes on pause and before the agent stops that pause. The pause code will usually
be defined by a numeric sequence that the agent will either key in on their
telephone terminal or report through QueueMetrics itself through the Agent’s
page. QueueMetrics will not consider how the sequence is entered, as long as
it’s present in the queue_log data it runs on.
[image: ./Pictures/cfg_pauses_list.png]

For each pause code, it is possible to tell QueueMetrics whether that time is:
	
billable or non-billable - whether the pause will be counted for client billing

	
payable or non-payable - whether the pause will be counted for payroll generation

All activities are optional and may be added or deleted at will. The following
fields apply:
	
A numeric code for that activity. The system will check that it will not be
 duplicated on the list (The code should be numeric so it may optionally be keyed-in using the rep’s terminal.
 This is not a technical requirement anyway)

	
A text label for the activity (e.g. "Lunch")

	
A flag telling the system whether that activity is: Billable or Not Billable

	
A flag telling the system whether that activity is: Payable or Not payable

	
A flag showing the type of pause. A pause can be a standard pause, or a pause of the ACD made to
 produce outbound calls, or a call wrap-up pause (As of QueueMetrics 1.7.0, this is
 partially implemented only in the AGAW sub system) or an administation type pause.

	
An optional security key for that activity. This will be used only when displaying activity choices in
 the Agent’s page. The reporting engine will report on all activities
 present in its analysis.

[image: ./Pictures/cfg_pauses_edit.png]

21.8. Configuring agent groups

An agent group is an attribute that is applied to an agent in order to keep track
of their life-cycle. This is used as a filtering criterion in QM and is
developed in the QA monitoring subsystem.
The idea here is that you can have e.g. "New hires", "Regular agents", "Expert agents";
each agent group has a different icon, that is displayed throughout QM whenever the
agent name is displayed.
[image: ./Pictures/cfg_agroups_list.png]

You can select different icons by clicking on them in the editor.
[image: ./Pictures/cfg_agroups_edit.png]

	[image: [Tip]]	
	you can add more icons that better suit your liking by uploading them
 to the /img/agent_groups folder in QueueMetrics.

21.9. Configuring QA forms

The set of current QA forms can be configured through the QA form editor. It shows the
current set of defined forms and lets you performs the usual operations (search,
filter, sorting, paged listing…).
[image: ./Pictures/image173.png]

The names of each section and the number of items that have been input for that form are
shown on the front page. If a form has any number of items input, it is considered
"locked" and cannot be modified anymore, though you can create a different
form with the same set of items.
The form editor looks like the following page:
[image: ./Pictures/image175.png]

You can enter:
	
The form name

	
The security key required (in addition to the basic one) to grade calls using this form

	
The security key required (in addition to the basic one) to run reports on this form

	
Whether the form allows new input or not; the total number of calls graded using this form is shown

	
The names of the section. There can be up to five sections. Any section MUST have a name, and there must
 be at least one section.

	
The threshold values for Call grading (the maximum for "Exceeds expectations" is fixed at 100).

	
The labels associated to each level in the Call grading (defaults are "Issue", "Req.Impr.", "Meets exp.", "Exceeds exp.").
Please note that a short label, used on the report pages, could be also defined (defaults are "Issue", "Impr.", "Meet", "Exc.").

	
A Queue visibility list - you can list a set of atomic queues for which this form
 will be displayed. Queues are separated by whitespaces. The field accepts wildcards
 to match multiple queues and/or subqueues.
 If the field is left blank, then the form is displayed for all queues.

To edit the set of items that belong to a form, you should have no data reported for that
form. If you have no data, the item editor icon [image: ./Pictures/image177.png] will show
from the main form page.
The editor looks like the following page:
[image: ./Pictures/QA_ExtraScore.png]

To add a new element, just select an element on the top form and a section it should be
added to.
On the main part of the page, you can edit the elements by changing them, moving them up
or down and removing them.
The "Active if…" field allows to enter a dependent rule, as described within the following chapter: "Handling dependent questions".
The Extra Score checkbox allows to give extra scoring to a particular question, in order to highlight an agent’s higher performance within a specific section, or to balance his/her averages.
The question in the form will have two main characteristics: it can have a score above the 100 standard value (up to a maximum of 120) and the score assigned to the question will not be calculated within the denominator part, when totalling averages for the specific section and the overall QA form.
The "Non Scoring" checkbox, if checked, forces the engine to ignore the inserted question score when calculating the section and form average. Questions flagged as "Non Scoring" are not classified
as "under or over performing items" in the QA form. Non scoring questions are aggregated on reports based on the number of times a particular score is found in the query period.
	[image: [Tip]]	
	When only one extra score question is within a section, the average will show as zero, given that within the denominator there are no values, but it is null.

21.9.1. Handling dependent questions

Since QueueMetrics 1.7.0, it is possible to have Dependent Questions, i.e. questions
that are enabled or disabled according to values input in a different question.
In order to enable this, a new input area is defined on the right side of each item.
Here the administrator can insert a rule that associated the question to a particular
parent question. There are several restrictions in the rule definitions:
	
A rule should be defined with the sequence LABEL, OPERATOR and VALUE where:

	
LABEL is the short code associated to each item in the section

	
OPERATOR is a mathematical operator in the subset: <, >, ⇐, >=, ==, !=

	
VALUE is a numerical value in the interval 0 (included) to 100 (included)

	
A rule cannot be composed by other rules

When the administrator saves the form, the server will parse each inserted rule and,
if an invlalid rule is be found, an exception is raised specifying the first incorrect rule
found. The administrator must then modify the wrong rule before submitting the form
definition again.
[image: ./Pictures/edit_qa_depquestions.png]
For example, a few rules are defined in the picture above:
	
The item NMYN is parent of two items: MYN and NMNUM. The MYN item is enabled only if the value
 inserted is equal to 0; the NMNUM item is enabled only if the value associated to the NMYN question
 is equal to 100.

	
The item NMMUL is related to the itemMNUM. This question is enabled only if the score given
 to the MNUM item is greater then 50.

	
The question MMUL is a normal question and is always enabled.

A couple of rules govern the way values for dependent question are handled when
the question is disabled:
	
Dependent questions, when saved, receive a "N/A" value, so they behave like
 non-madatory items when you check the "N/A" box. The value will be counted
 in the grading report statistics following the same rule.

	
The "N/A" value works with the same rule even if the dependent question is
 a shortcut one: if it is disabled it is not considered a shortcut.

21.9.2. Configuring QA items

The set of items that are selectable as members of a form can be configured by the user by
clicking on the "Edit items" button at the bottom of the QA forms editor.
[image: ./Pictures/image181.png]

New items can be added and the description can be edited if needed.
The weight of an item is the number of times that an item must be
counted in comparison to other items. All form level scores
consider the item’s weight.
	[image: [Warning]]	
	If you average an item with a score of 50 and one with a score of 100,
 each weighting one item, you have an average of (50+100)/2 = 75. If you
 average an item with score 50 and weight 2 and one with score 100 and
 weight one, you get ((50 + 50)+100)/3 = 66!

A shortcut item is an item that, if failed, will fail the entire form.
They are marked with a red icon when present.
	[image: [Tip]]	
	If a shortcut item fails, the whole form will have an overall
 score of zero, no matter what other scores are. While averages
 at the form level are affected by shortcuts, averages at the
 item level are not affected.

A session shortcut item is an item that, if failed, will fail the entire section.
They are marked with a red icon when present.
	[image: [Tip]]	
	If a session shortcut item fails, the whole section will have an overall
 score of zero, no matter what other scores are.

A mandatory field requires you to select a valid value; if it is not checked, the user can optionally
leave those items blank. Mandatory fields are marked with a green icon.
Different kinds of input can be accepted by the item - see below.
[image: ./Pictures/image183.png]

The Engagement code cannot be modified once input, and there can be no two items
with the same engagement code.
Items cannot be deleted if they are in use by at least one form. You can see the set
of forms that are using the chosen it at the bottom of the editor’s page.

21.9.3. Item value type: Numeric

A numeric value type must be an integer number between 0 and 100, extremes included.

21.9.4. Item value type: Yes/No

A Yes/No value stores 0 when set to No and 100 if set to Yes.

21.9.5. Item value type: Combo

This lets you create a drop-down selector, asscociating each entry with a given value.
You enter the list of values in "Multi value format" text box, with the format:
40:ToImprove|80:Satisfying|100:Good
Each option is made up of a numeric value plus the colon symbol ":" plus the text to be displayed.
Multiple options are separated by the pipe "|" character.

21.10. Defining agent performance rules

As explained above, in order to track performance you first have to express
a set of business targets that express what is expected from your agents and how
much deviations from each rule are comparatively worth, expressed in review points.
This is called a ruleset.
This can be done through the proper configuration page by users holding the key "QA_PERF_RULES";
they will see a new link from the home page:
[image: ./Pictures/QATrack_cfgmenu.png]

Selecting the link, a new page is shown listing rulesets already defined.
In order to define a new ruleset, you press the "Create New" button.
[image: ./Pictures/QATrack_rules.png]

The "Create New" button opens a new page where an empty rule is shown, like in the picture below.
[image: ./Pictures/QATrack_ruledef.png]

	[image: [Note]]	
	Targets will not be displayed until you first save
 the ruleset.

The creator should assign to the new ruleset a name, a short description,
and optionally a security key.
A rule is usually linked to a specific queue (or set of queues) and form.
This is because we expect to have homogeneous statistic distributions in
the same queue and form items. This might not be true outside a specific
form and/or queue. The user should select a specific queue and form before pressing "Save".
21.10.1. Available targets

When editing a ruleset, you see it is actually built out of a number of
targets. It is important to understand that there are basically two different kinds of targets:
	
"Aggregated" targets - identified by AVG - that are computed once per agent, and

	
"Atomic" targets that are computed for each call handled by the agent

When computing the review score for an agent, first each call is checked against
atomic targets and a first score is computed, then averages for the dataset are taken,
and they are computed against aggregated targets and an aggregate score is computed;
the final score is the sum of both scores.
	[image: [Tip]]	
	You can use either type of target, or both as once, as you best see fit.
 Try and run some tests to make yourself familiar with the ruleset.

	[image: [Warning]]	
	It is important to note that some targets are not available as
 atomic targets. Examples are the QCPH, Sales, Number of calls, (Qualified) Conversion etc.
 that are obviously associated to a set of calls and make no sense
 in relation to a single call.

21.10.2. Setting targets

For each possible target within the rule set, you can:
	
Enable or Disable a specific target rule

	
Insert an algebraic expression defining the rule for
 the "yellow" theshold

	
Specify a score that the engine will assign to the
 target when matching the "yellow" expression

	
Insert an algebraic expression defining the rule for the "red" level

	
Specify a score that the engine will assign to the target when
 matching the "red" expression

The algebraic expressions that can be used to define a threshold are:
	
simple mathematical expressions formed by an operator (in
 the set of "<", ">", "⇐", ">=") and a value.

	
X << Y: defines the internal interval between the values X and Y (excluded)

	
X ⇐⇐ Y: defines the internal interval between the values X and Y (included)

	
X >> Y: defines the external interval outside the values X and Y (excluded)

	
X >⇒= Y: defines the external interval outside the values X and Y (included)

Valid examples are:
	
"< 10" is triggered by a number lower than 10

	
">= 40" is triggered by a number greater or equalling 40

	
"40 << 80" is triggered by a number between 40 and 80

For not-averaged rules the user can access a wizard that simplifies definition
of interval-based rules.

21.11. Dataset-based agent performance wizard

A rule set can be inferred from the measured properties of a given data set;
this basically lets you express differences in terms of a percentage of outliers
expressed on the total number of calls.
In order to access the wizard, you click on the "pencil" icon:
[image: ./Pictures/QATrack_rulepopup.png]

In this modal dialog you define a start and end time period and the "yellow" and "red"
percentage of calls the user wants to include in the resulting rule, the type of interval
(internal or external) and whether the interval extreme values should be included or not in the resulting rule.
	[image: [Tip]]	
	Imagine you want to consider "yellow" the 10% of calls that are too long or too short
 and red the 5% of calls that are way too long or way too short in relation to
 the average length. You would set the "yellow" slider to "90% external" (meaning you want
 the external tails) and the "red" slider to "98% external".

The "Go compute" button runs an internal analysis that reports, in the
lower right table present in the dialog, the minimum and maximum values
representing the interval fulfilling the inserted parameters and the number
of calls analyzed. You can repeat the calculation until satisfied, then
press "Save" to insert the rule in the rule-set or press "Cancel" to forget it.

21.12. Configuring reports

Since version 1.6, QueueMetrics allows for the configuration of reports. This makes it easy to tailor
specific reports to specific users, instead of having all reports shown to all users. It also
adds the fexibility to hide part of a report to users that do not have specific keys, and to edit
the titles and subtitles for each reports.
In order to understand reports, it must be understood that a QueueMetrics report is made of
a number of screens (the "pages" that the report is made of), each of which is in turn made
of items (the actual tables containing data).
All elements (reports, screens and items) can be key-protected - so it is easy to make a full report,
or just a part of it, visible to some users only.
As both screens and items have a display order you may want to control, they all have an numeric
attribute called Sort Order that orders elements from the lower to the highest.
As QueueMetrics reports include an "All reports" page that in turn includes all elements in order,
it is possible to control which elements are visible in it at the screen and item level;
this is useful because you usually do not want extremely large items (like call lists, that may
span over thousand lines) to appear in it.
One last word must be spent for titles; as QueueMetrics is an inherently multi-language application,
titles may or may not be localized using QueueMetrics facilities.
	
If a title starts and ends with the "#" symbol, it is looked up in QueueMetrics internal
 localization resources, so it changes according to the language the user has chosen. The string
 must be one of those defined in the localization files.

	
In any other case, the string is displayed as-is.

21.12.1. Editing reports

In order to access the reports editor, from the homepage click on QueueMetrics settings → Edit reports.
[image: ./Pictures/reporteditor_01_list.png]

There will usually be ony one report called "All reports" - this is an automatically-generated report that includes
all available reports.
For each report, the number of associated screens is displayed.
Each report can be modified by clicking on the edit icon (the one that looks like a pencil) or the associated
screens can be shown by clicking on the report title.
	[image: [Tip]]	
	As creating a full report takes a while, it is possible to create multiple copies of the "All reports"
 items and then doing minor customizations by entering a new report name in the "Automatic report configuration"
 dialog. This is also handy when you upgrade QueueMetrics and want to test-drive new reports that were not
 previously available.

If you click on the edit icon, you will see the current report configuration:
[image: ./Pictures/reporteditor_01_edit.png]

	
The title and subtitle can be chosen freely and will be shown to the users

	
The type must be set to QM Report

	
You can enter a visibility key to make this report accessible to some users only

If you click on the pie chart icon, you will access a table where you can assign one or more reports to each agent. No specific key or property are required, but this feature is only available as of QueueMetrics version 12.10.
An administrator can also assign the maximum amount of time that an agent can have available, when viewing historical reports from the agent web page. The key default.ssarMaxReportPeriod is defined within the configuration.properties file. If this key is not present within this file, then the default time is 15 (days).

21.12.2. Editing screens

A report is made of a number of screens. They are the multiple selectable pages that are available when you run a report.
As the space is limited, each screen has a Short title as well as a full title.
[image: ./Pictures/reporteditor_02_list.png]

You can see that the items are sorted accoring to their Sort index, just as they will be displayed in the main reports.
You can also see the number of asscoiated items for each screen and whether the screen will appear in the "All reports" page.
Each screen can be modified by clicking on the edit icon (the one that looks like a pencil) or the associated
items can be shown by clicking on the screen title.
If you click on the edit icon, you see the details, as shown here:
[image: ./Pictures/reporteditor_02_edit.png]

	
The Short name is the one displayed in the horizontal page menu, so it should be very short

	
The Title is the one displayed at the top of the page

	
The Visibility key lets you hide this screen and all its associated items from user sthat do not
 have the specified key

	
The Sort order is an integer value that tells QueueMetrics how to position this element in
 respect to all other screens.

	
The Visible in All reports toggle decides whether this screen and its associated elements are visible
 on the "All reports" page

	[image: [Note]]	
	Both the Short name and Title fields display a decoded, localized version of the string
 just below their input box. This is what the end-user will actually see.

21.12.3. Editing items

When clicking on a screen title, you display the list of items that belong to that screen.
[image: ./Pictures/reporteditor_03_list.png]

You can see the title for each item, the Data Object tht actually creates data and its parameters.
Each item can be modified by clicking on the edit icon (the one that looks like a pencil).
[image: ./Pictures/reporteditor_03_edit.png]

	
The Title field is the one displayed in bold on top of the table

	
The optional Subtitle can be added as an explanation of the meaning of the graph.

	
The Visibility key lets you hide this item from users that do not hold the given key.

	
The Data Object is the routine that creates the requested table and/or graph. A list of
 available Data Objects is available here
Chapter 6, Report Details.

	
The Parameters field (if present) will let you add additional parameters that control
 the behavior of the Data Object.

	
The Sort order is an integer value that tells QueueMetrics how to position this element in
 respect to all other screens.

	
The Visible in All reports toggle decides whether this item is visible
 on the "All reports" page

	[image: [Note]]	
	The Title field displays a decoded, localized version of the string
 just below their input box. This is what the end-user will actually see.

	[image: [Caution]]	
	You cannot have multiple copies of the same DataObject on the same page.

21.13. Report ExportConfiguration pages

Users holding the key USR_REPORTS_EXPORT_EDIT can edit the list of PDF and XLS export jobs.
[image: ./Pictures/cfg_reportsexp_list.png]

Each job is associated to a specific query period, queue and report set meaning that, each time the report
is run, QueueMetrics calculates the results based on the input parameters and exports the whole report set
to the required format. The generated document is sent to the recipients list specified for the job.
Each job is identified by a numeric id generated by QueueMetrics and shown in the Id column. As
defined in the chapter Generate PDF and XLS reports and send them by e-mail
Section 18.1, “Generate PDF and XLS reports and send them by e-mail” this id
has to be used to run the report by an external ROBOT profile.
The user can edit a specific job, by clicking on the pencil icon, or can run it immediately, by clicking on the blue button
shown on the list.
	[image: [Note]]	
	The user is allowed to run the report only if holding the USR_REPORTS_EXPORT key.

Each time a user creates or edits a job, the next screen will be shown:
[image: ./Pictures/cfg_reportsexp_edit.png]

On this page the user is allowed to specify a title, needed to identify the job in the job list, and other relevant parameters
like period, queue, report name (an already defined report set), report type (XLS or PDF) and the orientation
(valid only for PDF documents).
Each reports export job could be associated to optional visibility keys used to hide/show the job to a set of
users. Finally, a list of e-mail recipients can be added - if present, on generation, the resulting report will be sent
to them.

21.14. Configuring IVR and DID/DNIS names

Users holding the keys USR_IVR and USR_DNIS can edit the list of known IVR and DNIS names.
[image: ./Pictures/cfg_ivr_list.png]

This list is used to decode the display of known IVR selections and DNIS numbers.
Both configuartion pages behave the same way.
	[image: [Tip]]	
	If you know that your Support IVR selection is 1-3-4, you could create
 an IVR entry of 134 that decodes to Support (1-3-4). This surely
 makes the display easier to read.

Elements that are not listed in the editor are displayed with the string they are
recorded with at the Asterisk level.
IVR entries are also used to decorate IVR menus in IVR path traversal analysis.
You simply add the name of the IVR menu and the decoded value.

21.15. Configuring paged call lists

It is possible to view details of calls (answered, unanswered) in a paginated order, rather than as a long list of data on a single page, allowing better readability when running a large result set.
To set this up, from the Home page you select \93Edit Reports\94 which leads to the \93Configure QueueMetrics reports\94 page (Cfg Reports tab). Click on the \93All reports\94 link and you will be shown all current reports. At the bottom of the screen select \93Create New\94.
Enter a Short Name such as \93New\94 and a Title such as \93New Blocks\94 - you can choose different Name/Title if necessary. Also, the Visible in All Reports field should be set to \93Yes\94. Now Save it.
Go back and select \93New Blocks\94 which leads to the \93Report: All Reports >> New Blocks >> Items\94 screen. Select \93Create New\94.
[image: ./Pictures/cfg_rep_new.png]

Save it and select \93Back\94 - you will now see the newly-created item.
If we run a Report we will see a new tab called \93New\94, as shown below, where the calls are showing in pages, rather than as a listing (note the buttons to go forward/back and that the page is 1 of 2 pages)
[image: ./Pictures/paginated_report.png]

In the image above, on the bottom right of the paginated list we can see a small icon just before the "next page" buttons.
this icon allows us to add or remove columns within the displayed paginated listing.
It is now possible to add the Music on Hold (MOH) columns "MOH events" and "MOH duration" which display the number of events where a caller was put on Hold with music and the total duration of such events.
You can also add the columns "IVR duration/IVR path" which displays the time the caller spent within the IVR selections and the choices the caller made while going through the process. Adding the "DNIS" column allows to display the number dialled to reach the queue.
[image: ./Pictures/MOH_paginated.png]

21.16. Configuring the new Real-time Agents Page

Configuring the new realtime page involves to set some configuration keys that are inherited from the old agent realtime page and a new set of keys specifically designed to operate with
the new realtime page.
This chapter summarize the most relevant keys needed to properly configure the new realtime page and the integrated softphone. For more details on each key, please refer to the
Appendix D, System preferences
Enable/Disable the hotdesking:
default.hotdesking=86400
A value different than zero enables the hotdesking.
Defines a custom CRM page that will be open on each new taken call:
Asterisk Unique ID visibility and related callback URL associated to the icon
default.crmapp=http://server/app?agent=[A]&unique=[U]&server=[S]&queue=[Q]&tst=[T]&cid=[C]&dnis=[D]&ivr=[I]&outcome=[O]&position=[P]&attempts=[M]
default.crmlabel=CRM Page
default.showAstClid=true
realtime.agent_autoopenurl=true
Defines two other optional custom backgrounds:
Custom web pages for the realtime agent page
realtime.agent_web1_url=http://www.queuemetrics.com/?agent=[A]
realtime.agent_web1_label=QueueMetrics
realtime.agent_web2_url=http://www.loway.ch/?agent=[a]
realtime.agent_web2_label=Loway
If CRM and/or custom backgrounds are not needed, it’s possible to override the default background changing the key:
realtime.agent_background_url=http://serverurl/backgroundpage.htm
In order to use the integrated softphone, the steps required are:
1. Configure the SIP server and the WebRTC URL
2. Add, for each agent, a SIP username, password and SIP Realm authentication.
Depending on our setup (normal or clustered mode), the SIP server and the WebRTC urls are set by changing the below configuration keys.
For a not clustered QueueMetrics install:
Default keys for the sofphone definition
default.sipaddress=10.10.5.49
default.websocketurl=ws://10.10.5.49:8088/ws
default.rtcWebBreaker=true
For a clustered QueueMetrics install, be sure you’re setting the following keys for each server in your setup:
cluster.serverX.sipaddress=10.10.5.49
cluster.serverX.websocketurl=ws://10.10.5.49:8088/ws
cluster.serverX.rtcWebBreaker=true

where serverX is the name of each server defined in the cluster configuration key.
Then, for each agent, set the SIP username, password and SIP Realm authentication through the Agent Configuration Pages, as explained in Section 21.4, “Configuring agents”
The Logon Panel allows to pre-validate the agent code and the agent extension needed by the login/logout process.
In order to validate these codes, a two set of keys have to be set:
The regexp to validate agent codes
realtime.agentRegexp=1\\d\\d

#A regexp to validate extension codes
realtime.extensionRegexp=\\d\\d\\d
The Logon Panel allows to mark as read only the agent code field. This could be accomplished by setting the following key:
default.lockedAgentPopupCode=true
The list of available queues for each agent is defined by the following key:
realtime.dynamicLoginQueues=all
Relevant values for this key are:
	
assigned or registered: the list of available queues shows only the queues where the agent plays a defined role (i.e. is a main/spill/wrap for these queues)

	
all: the list of availabel queues shows all the defined queues, without taking care of the agent role (but filtered by visibility key)

Agents can insert pauses through the Pauses panel. Pauses without a specified pause codes can be rejected by setting the following key:
default.pausecoderequired=true
Agents can grade taken calls only if they hold the QA_TRACK key.

21.17. QueueMetrics configuration wizard

In order to save time and make sure that QM is always up-to-date with the underlying
Asterisk configuration, it is possible to run a wizard that will load the
following data straight from Asterisk configuration files:
	
Which queues are in use, and their configuration

	
Which agents are being referenced, their name and how they belong to the various queues

It is also possible to automatically create users out of the defined agents, so that they
can log-on to QueueMetrics with the very same password they use to log-on to
Asterisk.
In order for the wizard to be run, the user must hold the grants to administer users,
edit queues, edit agents, and must hold the CONFIG key too.
If the user holds the required keys, the label "Setup wizard" will be shown on the front
page:
[image: ./Pictures/image185.png]

By clicking on it, the administrator will be lead to the first step of the wizard.
At the top of this page is a dropdown menu that defines where asterisk configuration could
be found. Actually the wizard is able to read information from:
	
File

	
Single machine Asterisk Manager Interface

	
Clustered machines through Asterisk Manager Interface

	
Asterisk realtime database

	
Asterisk queue log file

By selecting the "File" source, the three edit boxes will let the administrator able to specify the
local paths for the agents.conf, queues.conf and the users.conf file.
By selecting "Queue Log File" as source, the associated edit box will let the administrator able to specify
the local path for the queue_log file.
	[image: [Note]]	
	The users.conf file is optional and could integrate the information stored in the agents.conf file.
The agents.conf file, instead, is not required only if the users.conf is present.

	[image: [Note]]	
	If you don’t have the users.conf or the agents.conf file, you can leave in the edit boxes their default values
and the system will be able to skip it if not found.

For sources different than "File", or "Queue Log File", the wizard will use some configuration options to know how to reach the required
information. More details can be found in Section 21.19, “Configuring system preferences” and in Appendix D, System preferences.
[image: ./Pictures/image187.png]

When you have selected the source you want to be read, click on Next button. You will be redirected on the validation
page. This page will inform you if the provided sources were succesfully read or, in the worst case, it will
show you a message reporting an explanation of the error found.
[image: ./Pictures/image188.png]

If the validation fails, clicking on Next button you’ll be forwarded back to the first step, otherwise, you’ll be redirected
to the next step.
[image: ./Pictures/image189.png]

The wizard will scan the available agents and presents you a list of agents to be created
or updated. By default, this wizard will try not to modify an agent or a queue
that is already present in QM, that is the found data will be shown but
unchecked. Check on the items to include/exclude them as needed.
If no agents will be selected, by clicking on Next button the wizard
will skip the next step and will forward you directly to the queue selection step.
If at least one agent was selected, instead, when you click on Next button you’ll be redirected to the window shown below.
[image: ./Pictures/image191.png]

If the corresponding QM users, for selected agents only, are not present, they are
created automatically by this mask.
Please note that if the wizard is not able to read the password associated to a specific user (because the password is not
specified in the configuration files or because the wizard is reading information from AMI or realtime, or the queue log file, where
password for agents are not shown) it will use the following rules:
	
For each new user added, a default password will be forced to be equal to their agent code

	
For each user to be updated (i.e. already present in the QueueMetrics database) a default password will be shown in the mask but
it will never used to overwrite the already present one.

[image: ./Pictures/image193.png]

The queues will be created or updated as needed; existing queues will not usually be
overwritten without explicit user permission.
	[image: [Note]]	
	A queue will be automatically checked to be updated if at least one of its agent member was selected to be
updated and/or added.

	[image: [Note]]	
	When updating a queue, the spilloff and queue members lists will be generated looking at the penalties associated
to the agents read from the sources. If an agent is already present in a member or spilloff list, but it was not
selected to be updated, he will not removed and/or moved from any list.

[image: ./Pictures/image195.png]

If you click to the Next button you’ll be redirected to the page above reported. This page will display a summary of
the QueueMetrics database updates that have been scheduled to be performed.
Clicking on the Yes button, the scheduled actions will be run and you will be redirected to the last page where
a table listing the related operations results will be presented.
Clicking on No button, instead, you’ll be forwarded back to the first wizard step.
[image: ./Pictures/image196.png]

The QueueMetrics database is now updated with the information found in the selected sources. You can go back to the
home page clicking on Next button.

21.18. Unattended QueueMetrics configuration and update

QueueMetrics could be updated and configured by means of external http queries made in a known format. This is really interesting
for setting up a cron job to be completed sometimes during the day.
When QueueMetrics receives external http queries, it will perform all the configuration wizard steps together (see Section 21.17, “QueueMetrics configuration wizard”)
assuming default answers. This will result in a background synchronization between your asterisk boxes and the QueueMetrics database.
To be able to run periodic QueueMetrics update, you need:
	
A QueueMetrics user holding the CONFIG key

	
A command line script able to perform http queries

The URL to be used to start the unattended configuration system has to be formatted as follow:
http://qmaddress/queuemetrics/autoconf_Robot.do?user=demoadmin&pass=demo \
 &stype=0&agents=/etc/agenti.conf&queues=/etc/code.conf&users=/etc/users.conf
The meaning of specified parameters is below reported:
	
user: the username to be responsible for the update process

	
pass: the password associated to specified username

	
stype: defines what type of source you want to use and it could assume the following values:

	
0: File. If no other parameters were specified, the wizard will read the files defined in the default configuration.

	
1: Single Machine Asterisk Manager Interface. The wizard will read information from the machine specified in callfile.dir key.

	
2: Clustered Machines Asterisk Manager Interface. The wizard will read information from the machines specified in the standard cluster definition.

	
3: Asterisk realtime. The wizard will read information from the database specified in the configuration.

	
4: Asterisk queue log file. The wizard will read information from the provided queue log file.

The user, pass and stype are mandatory; the other parameters are optional and have no meaning when the requested source is
different from "file".
The other parameters are:
	
agents: specifies the asterisk agents configuration file (and it’s read only when the "File" source is specified)

	
queues: specifies the asterisk queues configuration file (and it’s read only when the "File" source is specified)

	
users: specifies the asterisk users configuration file (and it’s read only when the "File" source is specified)

	
qlog: specifies the asterisk queue log file (and it’s read only when the "Asterisk Queue Log" source is specified)

When QueueMetrics terminates the procedure, it will answer with a result page where the term "SUCCESS", or "FAIL", will
be present reflecting the operation success status.
In this page will be also present a list of the performed operation (and their result status). An example page is reported below:
[image: ./Pictures/image250.png]

21.19. Configuring system preferences

System preferences can be edited by editing a text file called configuration.properties located in the WEB-INF directory of the QM
webapp. The absolute path on your system can be found by looking at the System path property on the Licence
page.
A complete list of preferences can be found in the chapter Appendix D, System preferences.
Once a preferences value is changed, it is enough for the user to log off and log on again; restarting the servlet container is not needed.
	[image: [Tip]]	
	You can check the current set of system preferences from the Section 21.21, “Using the DbTest Diagnostic Tools” page.

21.20. Installing the AGAW runner

Once your copy of QueueMetrics is correctly installed, the Queue Runner can be run using
a script that is available as WEB-INF/mysql-utils/agaw-runner/agaw-runner.sh
under the QM directory.
This file must be edited to set its running parameters, that are:
JAVA=/usr/local/queuemetrics/java/bin/java
Path to the java virtual machine. Please point to a SUN JDK version 1.4 or newer. The
default path points to the default JDK that comes with the automatic
QueueMetrics installation.
VMOPTS=-server -Xmx256M -Xms256M
The options for the Virtual Machine. Should be okay for most servers.
USER=demoadmin
PASS=demo
The username and password of a user the transactions will be run under. This should
be a regular user or an administrator with visibility to all queues to be
selected.
JDBC="jdbc:mysql://10.10.3.5/qmueuemetrics?zeroDateTimeBehavior=convertToNull&\
 jdbcCompliantTruncation=false&user=queuemetrics&password=javadude"
The JDBC URL to connect to the same database as the main QueueMetrics instance (see your
web.xml file).
QMPATH= /usr/local/queuemetrics/webapps/queuemetrics-1.5.0
The system path to the local QueueMetrics installation. You can find it on the local Licence
page.
ITER=3
The number of iterations that will be run by the Java process before terminating and
spawning a new Java process. This is done so that there is no problem with potential memory leaks, as the JVM is
periodically rebuilt. A higher ITER count means more iterations using the same
JVM and avoids the burden of reloading classes and libraries.
IDLE=2000
The idle time in milliseconds between one interaction and the other.
RUNLOG=false
RUNLOGDIR=/root/runlog
If RUNLOG is set to TRUE, a detailed run log will be created under the RUNLOGDIR. This
directory must be writeable by the Java process and MUST be cleaned periodically -
enabling this feature causes a lot of information to be written. See Section 21.20.4, “Debugging with Runlogs”.
QMARCH=$JARLIB/loway-tpf-155p.jar
QMJAR=$JARLIB/QueueMetrics-1.5.0.jar
REDRPC=$JARLIB/redstone-xmlrpc-1.0.jar
MYSQLJAR=$JARLIB/mysql-connector-java-3.1.10-bin.jar
These are the names of the Java classes bundles that contain the local version of QM and
of its TPF architecture. These must match the ones under WEB-INF/lib or you will get "Class not found" errors on
startup. In a standard QueueMetrics release, QMARCH and QMJAR items are correctly set by the build system to match
the current JARs.
SERVLET=/usr/local/queuemetrics/tomcat/common/lib/servlet-api.jar
This points to the servlet API used by your Tomcat installation. The default path is okay
for a standard QM installation.
Once you set everything up, you can simply set the script executable and start it to see
its output.
chmod a+x agaw-runner.sh
./agaw.runner.sh
Please note that the script will loop indefinitely, so it must be stopped through a kill -9 command.
21.20.1. Installing the database clean-up jobs

The AGAW subsystem produces a great number of old / obsolete / informative log data that
is meant to help diagnosing problems, but that can end up filling your disks
pointlessly.
There are currently two ways to run database purging jobs:
	
There is a button from the main AGAW screen, and

	
Through a modular HTTP call, meant to be run through scheduled cron jobs

In order to specify parameters for this activity, you should add the following lines to
your configuration.properties file:
Oldest obsolete run to keep when running an optimization, in minutes
dbmaint.agaw_oldestRun=30

Oldest obsolete log to keep when running an optimization, in minutes
dbmaint.agaw_oldestLog=30

Oldest obsolete broadcast entries to keep when running an optimization, in minutes
dbmaint.agaw_oldestBroadcast=180
Once you set up the parameters above as preferred (maybe starting with a couple of
hours and then see if it is too much / too few) you add the following call to
an hourly cron job:
wget http://server/qm/qm_sys_optimize.do?O_L=user&O_P=pass&O_C=AGC
Where user and pass belong to one administrative user.
The O_C parameters takes one or more of the following parameters:
	Parameter 	Meaning 	Warnings
	AGC
	Purge AWAG tables
	Might block for a few seconds

	AQL
	Optimize queue_log table by reordering data
	Will block; run daily or weekly when system not in use

	OQL
	Optimize queue_log table
	Might block for a few seconds

	OAG
	Optimize AGAW tables
	Might block for a few seconds

	OTB
	Optimize other QM tables
	

The calls to the qm_sys_optimize transaction are made to be human- and machine-readable,
so you might want to run the first time in a browser.
You might want to run an hourly cleanup job plus a nightly/weekly general cleanup and
optimization job. They all will likely block the tables they are optimizing for
a perceivable time, so do not run them at peak time when users are actually
running QM.

21.20.2. Installing the AGAW client facades

The client facades are installed with the main QueueMetrics app, so they will work if the
main QM app is working. The only customization must be made in a file named agaw.properties that resides under
WEB-INF/
client.refresh=7000
The timeout (in milliseconds) that will lead the client to refresh information on the page.
0 means no refreshing, or user-driven refreshes. The lower this value, the
higher the load will be on the AGAW fa\E7ade server.
client.sparkurl=http://chat.myserver:9090/webchat/jivelive.jsp
This is an absolute link to the jivelive.jsp page (a part of Spark Fatspath) that should
live on the same server for security reasons. If no URL is passed, there is no
"Chat now" section in the clients. To avoid cross-site scripting problems, this
works best when both QM and FastPath are installed on the same server.
client.sparkuser=supervisors@workgroup.chat
The virtual user that will be used for Spark Fastpath "Chat Now" button.
As of version 1.5, there is only one available fa\E7ade that "mimics" the behavior of
the XUL fa\E7ade and it is called Plain HTML. You can access it at the address
http://server:8080/queuemetrics/agaw/facades/plain_frame.jsp
Please note
that accessing the fa\E7ade when logged in QueueMetrics is likely to cause
unexpected session termination of the QM session - if you must access it with
QM open, use a separate browser.

21.20.3. Setting up the AGAW activation key

The default version of the AGAW system comes with a default activation key that will let
you test the system with two agents only. You can ask Loway for a time-limited,
unlimited-agents demo activation key for the whole AGAW subsystem.
If you try to run the AGAW loader for more agents than the licensed ones, you get an error
message on the system log.
The AGAW activation key can be installed in the agaw.properties file.
License key for the Agaw Runner
runner.activation=............................
The AGAW activation key will be picked up immediately when the Runner restarts, and
licensing information will be printed on the standard output.

21.20.4. Debugging with Runlogs

Runlogs are text files that contain the very details calculations for each run are based
upon, so they make it possible to spot from where the figures displayed in the AGAW browser come from.
In order to run this, it is necessary to:
	
Enable this feature in the agaw-runner.sh script

	
Create a cron job to delete the generated files, e.g. nightly or weekly, as the result is extremely verbose

	
Make it possible for the administrative users to fetch the files remotely, e.g via a WinSCP client

When this feature is turned on, when administrative uses happen to find some incorrect
data, they should:
	
Take a screenshot of the incorrect data

	
Write down the run-id

	
Fetch the text file called agawrun_XXXXX.txt that is under the
 RUNLOGDIR directory, where XXXXX
 is the run-id

The run-id can be found as shown here:
[image: ./Pictures/image198.png]

21.21. Using the DbTest Diagnostic Tools

The DbTest page, available at the address http://127.0.0.1:8080/queuemetrics/dbtest , will not only let you
update the database, but also check a number of QueueMetrics subsystems. It is invaluable for debugging
QueueMetrics installations where you suspect some problem may be.
[image: ./Pictures/dbtest_page.png]

It is possible to completely turn off the DbTester page when not needed by toggling the default.viewTechInfo
system property.
As of QM release 12.10 it is possible to access this page directly from the QueueMetrics Home page by selecting the System diagnostic tools link, which can be found within the available Administrative tools.
21.21.1. Checking the current system configuration

[image: ./Pictures/dbtest_sysconfig.png]

From this page, you can see:
	
The current settings for all system configuration properties, as written in the configuration.properties
 file

	
The current Java environment variables, usually defined t at the JVM level

	
The current memory and CPU settings for QueueMetrics, and the current memory usage. Note that Java will
 usually try to use all memory availble before doing a cleanup, so seeing most memory in use does not
 necessarily mean that QM needs more.

21.21.2. Checking an Asterisk Manager connection

It is possible to check an AMI connection to an Asterisk server.
[image: ./Pictures/dbtest_ami1.png]

As you can see, the AMI connections in your configuration.properties file are automatically
read and can be configured at the touch of a button. As an alternative, you can
manually enter the configuration parameters and see what happens.
[image: ./Pictures/dbtest_ami2.png]

In case the connection (like in the example above) displays an error, the complete stack trace is
easily available for inspection. In case everything goes OK, QM will try to originate a call
in order to check that the privileges are correct.
If the connection is possible, QueueMetrics will try to:
	
Download and display the queuemetrics diaplan, as displayed under "Configured Dialplan"

	
Download and display the current queue configuration, as displayed under "Configured
 Queues". This shows the configuration as defined in queues. conf plus the current
 agent membership (static and dynamic).

	
Download and display the current agent configuration (this only applis to agents as
 defined in agents.conf)

For further information on the AMI connection, see Configuring the AMI connection
Section 24.19, “Configuring the AMI connection” .

21.21.3. Live inspector of the QueueMetrics database

It is possible to display the live status of the queue_log table, to make
it easy to see data as it is appended by Asterisk.
[image: ./Pictures/dbtest_liveinspect.png]

	[image: [Note]]	
	If you see "Partition null" in the graph, this means the queue_log table is empty.

The last 20 lines of the queue_log table for the given partition are displayed.
In "Split mode" the last 10 lines of the queue_log table about calls and the
last 10 lines about agent status are displayed separately.
The display will reload automatically every 10 seconds.
It is possible also to search for a substring within a given partition, e.g.
a uniqueid code, this may be very slow, and it usually requires a
complete table scan. Do not do this repeatedly on a busy production box!
The Partition graph displays the number of events per minute in the last hour or so.

21.21.4. RAM cache inspector

This page displays the current status of the different caching layers used within QueueMetrics.
[image: ./Pictures/dbtest_ramcache.png]

The log cache is an object cache that stores, for each partition, event objects
already processsed. It must be turned on by setting realtime.useRowCache=true.
For each partition the number of cached objects it is displayed as "Rows". If
you use hotdesking you should see a number of objects in the "Hotd" section as well.
All of your partitions should appear here.
	[image: [Warning]]	
	the log cache will be used only if the storage type is SQL-based.

The SQL cache caches SQL results to some common queries. Yo can see the current cache size
(it is usually quite small), the total number of requests, how many of them were answered
("Cached fresh"), how many of them had the query repeated ("Cached stale") and the overall
cache efficiency. In a busy call center this should be around 70-90%.
The String cache counts the number of string instances that are currently cached.
Values in the 100,000 - 1 million element range are not uncommon.
All caches are designed to be emptied when working in order to reclaim memory, so you can
safely click on "Clear caches" even while QM is running.

21.22. System audit log inspector

QueueMetrics keeps track of a number of activities that happen on the system;
for example, every time a user logs on or off, this fact and the related IP
address is added to the audit log.
Administrators who hold the key USR_SYSLOG can access the audit log
from Home Page → View Audit Log.
[image: ./Pictures/syslog_1.png]

The page displayed is very simple and only allows searching for a
given time interval.
A number of different records are tracked throughout the system -
see the Appendix
Appendix F, Audit log records for complete details.
	[image: [Warning]]	
	On a busy system with 50+ agents, this log may get large fast;
 as it does not get deleted automatically, you should keep track
 of the arch_syslog table size and delete it when it is too large.

Chapter 22. Listening to calls using Pluggable Modules (PM)

Since QueueMetrics 1.4.7, the retrieval of audio recordings uses a different paradigm
called Pluggable Modules. This makes it feasible to set up different modules to
match the configuration of the existing system and to use them natively.
Pluggable modules are used in two areas:
	
Listening to recorded (closed) calls, i.e retrieving recordings

	
Listening to live calls, i.e.setting up a channel "spy" feature.

In order to control which module is called, two configuration properties are set:
	
audio.server controls the module to do find recorded calls

	
audio.liveserver controls the module to set up live call listening

Each configuration property is set to the complete name of a Java class that
implements the required server. Such names must be set exactly as described, or an exception will be raised.
Each module can then have its own configuration properties to control its own behaviour.
22.1. PMs to match Recorded Calls

These PMs are used to find audio recordings.
22.1.1. Plain old recordings: LocalFiles

	Module name: 	LocalFiles
	Full Java Path:
	it.loway.app.queuemetrics.callListen.listeners.LocalFiles

	Properties used:
	default.monitored_calls in a single-server environment, or cluster.SERVER.monitored_calls in a cluster

	Available since:
	1.4.7

This is the standard search method that comes with QueueMetrics. Basically, all directories
under default.monitored_calls are
explored recursively, and all audio files matching the Asterisk ID of the main
call that was queued are retrieved. Therefore the call files found can be zero or more.
This PM is sub-optimal for very large call centres, where the cost of scanning through all
recordings (maybe on remotely mounted disks) could take a significant time. If you are in such an environment,
see the LocalFilesByDay entry.
This PM is used by default if no other server is specified in the configuration.properties file.

22.1.2. Large storage with recordings: LocalFilesByDay

	Module name: 	LocalFilesByDay
	Full Java Path:
	it.loway.app.queuemetrics.callListen.listeners.LocalFilesByDay

	Properties used:
	default.monitored_calls in a single-server environment, or cluster.SERVER.monitored_calls in a cluster

audio.lookBack for how many hours before or after midnight is a call considered a �borderline� case (default 4).

	Available since:
	1.4.7

This PM works exactly like the LocalFiles
one, but allows using placeholders in the file path; this way, you can set the
default recordings directory to handle only a subset of all recordings.
For example, if you set default.monitored_calls to /var/myrecordings/%YY-%MM/ when
trying to listen to a call that was made on Jan 9, 2007 will expand to /var/myrecordings/2007-01/ therefore
making the directory scanning much more manageable.
Valid placeholders include:
	
%YY → the 4-digit year when the call was made

	
%MM → the 2-digit month when the call was made

	
%DD → the 2-digit day of month when the call was made

	
%SE → in a clustered environment, the server name (all lower case)

	
%QU → the queue name (all lower case)

Though this is unlikely, it is possible that a call gets recorded on a given day and then
gets queued on a different day, e.g. for calls that happen around midnight. QM
handles this case by double-checking all calls within a boundary of n hours from the midnight in both the
days that are divided by that midnight. This behaviour can be set using the audio.lookBack property.
Asterisk can easily adapt to recording files in a way that is compatible with this storage model,
like e.g.:
. . . .
exten => 999,n,Set(MONITOR_FILENAME=/audio-nas/${STRFTIME(${EPOCH},,%Y-%m/%d)}/call-${UNIQUEID}.wav)
exten => 999,n,Queue(778,t,,)
. . . .
Will store audio files as:
/audio-nas/2011-03/10/call-123456.7890.wav
The nice part is that Asterisk will automatically create missing directories, as needed.

22.1.3. Using an external server: ClassicXmlRpcRecordings

	Module name: 	ClassicXmlRpcRecordings
	Full Java Path:
	it.loway.app.queuemetrics.callListen.listeners.ClassicXmlRpcRecordings

	Properties used:
	default.audioRpcServer (non-clustered) or cluster.SERVER.audioRpcServer: The address of the XML-RPC server implementing
the QMAudio.findStoredFile interface.

	Available since:
	1.4.7

This is the standard XML-RPC implementation and makes it easy to create a completely custom
scheme to handle recordings. The output of this function must be a single URL
that can either stream the audio file or launch a player to stream that call.
This is completely user-configurable.
The details of how to write an XML-RPC server for the QMAudio.findStoredFile
interface can be found on the XML-RPC guide for QueueMetrics. We ship a sample
implementation of such a server in the xmlrpc_audio_server.php
server that comes with QueueMetrics.
See also section Section 24.11, “Enabling XML-RPC call listening and streaming”.

22.1.4. External audio recorder: OrekaWeb

	Module name: 	OrekaWeb
	Full Java Path:
	it.loway.app.queuemetrics.callListen.listeners.OrekaWeb

	Properties used:
	* oreka.jdbcUrl points to the server where the OrekaWeb database is stored. Firewalls and MySQL user setup
must allow a JDBC connection coming from the QueueMetrics server.

* oreka.sipHeader is the name of the tag to be tracked in the Oreka system. If missing, it’s X-Unique-ID.

* oreka.web is the URL of an OrekaWeb application - QM uses Oreka’s applets for video playback.

* oreka.playersize lets you set the size of the player, e.g. "1024x780"

* oreka.mode: set to "1" if running Oreka up to minor build number 2494, to "2" if newer.

	Available since:
	1.5.1

This PM lets you offline all the audio recording to an Oreka system - see http://oreka.sourceforge.net/
This PM lets you playback audio (and optionally video) of recorder calls stored in Oreka.
In order to listen to live calls, it is possible tp use either some Asterisk-based method, e.g. ClassicQMListenerRT below, or an Oreka-based methos like OrekaWebRT below.
It needs the JDBC URI to point to the Oreka database; the database must contain the following tables:
orktag, orksegment, orktape, orkservice, orktagtype.
	[image: [Warning]]	
	In order to have QueueMetrics associate the Asterisk call-ids correctly, you must configure
Asterisk and Oreka to store the call-id of the main leg of the call, the one upon which the Queue()
command is called.

Propagating the SIP header

As Oreka is a passive recording solution based on SIP, and the call’s UniqueId is used to match a call
in QueueMetrics, it is necessary for you to add the UniqueId information to the SIP headers.
If/how this can be done depends on the kind of channels you have as members of the queue.
If you have static or dynamic SIP phones as members of the queue, e.g.
 [myQueue]

 member => SIP/1234
 member => SIP/1235
you can simply use the following piece of dialplan:

 exten => s,n,SIPAddHeader(X-Unique-ID: ${UNIQUEID})
 exten => s,n,Queue(myQueue|t|30)

If instead you have other types of channels as members of the queue, e.g.
 [myQueue]

 member => Agent/101
 member => Local/102@agents
then you need to store the UniqueID in an inherited variable, e.g.
 ...
 exten => 411,2,Set(__MASTERID=${UNIQUEID})
 exten => 411,3,Queue(myQueue|t|30)

 [agents]
 exten => _XXX,1,SipAddHeader(X-Unique-ID: ${MASTERID})
 exten => _XXX,2,Dial(SIP/${EXTEN}|300)
This makes it possible to use Oreka in all common usage scenarios.

Configuring event capture in Oreka

You need to modify OrkAudio’s config.xml, under the <VoIpPlugin> section:
 <SipExtractFields>X-Unique-ID</SipExtractFields>
And restart OrkAudio.

Which version of Oreka do I need?

The minimal software you can use seems to be the commercial version (Orecx TR).
This includes G729 Codec and Live Monitoring.

Video playback

Orecx is able to capture and store along with the audio recording of the call a
screen capture of the agent’s workstation while the call was made. The importance
of such a feature is obvious.
If a video recording is present for a given call, then the audio file will be
followed by the string "[vid]" to show that it’s a joint audio and video recording.
In order to play it back, QM will not stream it through a browser but will open up
the VNC player that ships with OrkWeb; therefore you must configure the oreka.web
property. The applet is not used in case of audio-only recordings.

22.1.5. Advanced Oreka support: OrekaEncrypted

	Module name: 	OrekaEncrypted
	Full Java Path:
	it.loway.app.queuemetrics.callListen.listeners.OrekaEncrypted

	Properties used:
	* oreka.jdbcUrl points to the server where the OrekaWeb database is stored. Firewalls and MySQL user setup
must allow a JDBC connection coming from the QueueMetrics server.

* oreka.sipHeader is the name of the tag to be tracked in the Oreka system. If missing, it’s X-Unique-ID.

* oreka.web is the URL of an OrekaWeb application - QM uses Oreka’s applets for video playback.

* oreka.playersize lets you set the size of the player, e.g. "1024x780"

* oreka.username and oreka.password: the account used to access OrekaWeb

* oreka.mode: set to "1" if running Oreka up to minor build number 2494, to "2" if newer.

	Available since:
	12.04

	Requires:
	OrkWeb 1.4-2178 or newer

This PM is an advanced version of the OrekaWeb module, and it offers the same functionalities plus a
few additional ones:
	
Support for encrypted Oreka calls: calls can be stored in an encrypted format and will be decrypyed
 dinamically by Oreka. The PM may handle encrypted and unencrypted contents at the same time.

	
Support for audio-only playback through the Oreka player (a new link will let you open the player as well
 as download the file as was possible in earlier versions)

	
Support for tags: call tags are passed to the Oreka player, and you can use the player to move back
 and forth between them

	
QM acts as a proxy for all OrekaWeb contents

The same set-up instruction apply as per the OrekaWeb PM.
Secure access

The OrekaEncrypted PM has QM act as a secure proxy for all Oreka contents:
	
The OrekaWeb server can be invisible to the user (e.g on a private network);

	
There are no more limitation for cross-domain downloading

	
There is a double security check; first, when a file is requested, the proxy checks that this file
 belongs to the list of audio files that the current user just searched; then, QM will authenticate
 to OrkWeb and, if successful, will try and stream the file back to the client.

	
For additional security, any audio/video file is streamed through a small content buffer that is
 constantly overwritten and that is immediately cleaned after usage; it is never written to disk
 on the QM server.

If you turn on encryption and authenticated downloads on the Oreka system, and use HTTPS to connect to
QM, the result is a very secure audio server for your Asterisk system.

22.1.6. Using multiple PMs at once: MultiListener

	Module name: 	MultiListener
	Full Java Path:
	it.loway.app.queuemetrics.callListen.listeners.MultiListener

	Properties used:
	audio.multi lets you define a set of PMs to be queried for files (enter their names, separated by pipe)

audio.multi.* specifies the properties of each listener.

	Available since:
	1.7.0

This PM lets you query multiple PMs in the order you specify to look for the call you are
looking for. A common scenario may be the following one:
	
All calls are recorded to a local volume, e.g. /queues/audio. This is
 where files just recorded are held.

	
A nightly process compresses the files to MP3 and moves them to a large NAS
 device mounted under /mnt/nas, where they are stored separated by day.

In order to retrieve calls, we want QM to first check in /queues/audio; if nothing
is found, then we will look under /mnt/nas/2010-11-23. This can be implemented
with the following configuration:
define the PM and the search order
audio.server=it.loway.app.queuemetrics.callListen.listeners.MultiListener
audio.multi=loc|nas

first PM: local calls
audio.multi.loc=it.loway.app.queuemetrics.callListen.listeners.LocalFiles
audio.multi.loc.default.monitored_calls=/queues/audio

second PM: NAS storage
audio.multi.nas=it.loway.app.queuemetrics.callListen.listeners.LocalFilesByDay
audio.multi.nas.default.monitored_calls=/mnt/nas/%YY-%MM-%DD
What we do here is the following:
	
We first define a MultiListener and tell it via the audio.multi property to
 actually query a PM called "loc" first and one called "nas" if nothing is
 found. You can have as many PMs as you need and you canset their names as
 you best see fit.

	
We specify the PM to be used for "loc" in the audio.multi.loc property.
 Properties to be set for it are appended to the audio.multi.PMNAME.
 hierarchy, as we do in this example to set the default.monitored_calls
 property.

	
As you can see, you can have multiple PMs of the same type as well as different,
 and ecah can have their own configuration properties.

22.1.7. Pluggable Listener for Enswitch Platform Integration

	Module name: 	Enswitch
	Full Java Path:
	it.loway.app.queuemetrics.callListen.listeners.thirdparty.Enswitch

	Properties used:
	enswitch.serverclass is the full qualified name of an external class code implementing the interface specified on next paragraph. We expect to have an external implementation resulting in a .class files (IntegrationExample.java in this example) stored in a suitable jar and/or classpath available to QueueMetrics.
enswitch.server used to provide authentication on the remote server.
enswitch.user used to provide authentication on the remote server.
enswitch.password used to provide authentication on the remote server.

	Available since:
	12.5.4-418

Exposed Interface
QueueMetrics expects to have in his classpath an implementation of the following interface:
public interface EnswitchRecording {
 public String[][] getUrls(String host, String username, String password, String callID);
}
The getUrls should return a matrix containing the list of URLs associated to the specified callID. Each row in the matrix specifies:
	
The URL at column 0

	
The name (usually shown as clickable link by QueueMetrics) at column 1

22.2. PMs to match Live Calls

These PMs are used to listen to live calls.
22.2.1. Live calls through QueueMetrics: ClassicQMListenerRT

	Module name: 	ClassicQMListenerRT
	Full Java Path:
	it.loway.app.queuemetrics.callListen.RTlisteners.ClassicQMListenerRT

	Properties used:
	For listening to inbound calls: callfile.monitoring.channel, callfile.monitoring.extension, callfile.monitoring.context;

For listening to outbound calls: callfile.outmonitoring.channel, callfile.outmonitoring.extension, callfile.outmonitoring.context;

In a single-server environment: callfile.dir (points to a local call-file directory or a manager interface port);

In a clustered environment: cluster.SERVER.manager (points to each Asterisk server�s manager interface port)

	Available since:
	1.4.7

This is the standard QM behaviour: when listening to inbound or outbound calls, a popup
appears and asks for a local extension. That local extension is connected to
the live channel so that the local user can listen to the ongoing call.
In order for this to work, the dial-plan on each Asterisk server must implement the
correct logic - an example is given in the [queuemetrics] context that comes with QueueMetrics.
This PM is used by default if no other server is specified in the configuration.properties file.

22.2.2. Live calls through an external module: ClassicXmlRpcListenerRT

	Module name: 	ClassicXmlRpcListenerRT
	Full Java Path:
	it.loway.app.queuemetrics.callListen.RTlisteners.ClassicXmlRpcListenerRT

	Properties used:
	default.audioRpcServer (non-clustered) or cluster.SERVER.audioRpcServer: The
address of the XML-RPC server implementing the QMAudio.listenOngoingCalls interface.

	Available since:
	1.4.7

This is the standard XML-RPC implementation and makes it easy to create a completely custom
scheme to handle live monitoring. The output of this function must be a single
URL that will launch a player to stream that call. This is completely user-configurable.
The details of how to write an XML-RPC server for the QMAudio. listenOngoingCalls interface can be found on the XML-RPC guide for
QueueMetrics. We ship a sample implementation of such a server in the xmlrpc_audio_server.php server that comes
with QueueMetrics.
See also section Section 24.11, “Enabling XML-RPC call listening and streaming”

22.2.3. Live calls through Oreka: OrekaWebRT

	Module name: 	OrekaWebRT
	Full Java Path:
	it.loway.app.queuemetrics.callListen.RTlisteners.OrekaWebRT

	Properties used:
	oreka.rtserver is the master property that tells QM if Oreka is clustered or not

oreka.web is the URL of an OrekaWeb application - QM uses Oreka’s applets for playback.

oreka.rtserver.xxx is used for clustered configurations.

	Available since:
	1.5.2

This PM lets your supervisors monitor agents using a web-based interface provided by Oreka. The supervisors
will simply click on a live call and it will be streamed to them through their browser (note: a window
will open and will close immediately before the popup opens. This is expected behaviour).
In order for this PM to work, your system configuration must matche these criteria:
	
You should be using Callback agents, where the agent extension is correctly filled in at logon time

	
Pop-up windows should be openable by QM - this feature is disabled by default in most modern browsers.

	
You should also select a way for this PM to choose on which Oreka server the call must be listened on.

Do not forget to set the oreka.web property in any case in order to download the playback applet.
Using only one Oreka server

If you are deploying only one Oreka server, you should set the address of the live
listening port by setting oreka.rtserver to fixed and then entering the
live streaming port as follows:
oreka.rtserver=fixed
oreka.rtserver.address=http://hostname:59120/?type=stream&localparty=#AGENTEXT#
This will work even on a clustered system, as long as there is only one Oreka server.
Note how the agent extension is expanded in the string (see below for the full list of
expansion tokens).

Using a cluster of Oreka servers

If you have a set of Oreka servers (likely because you have a cluster of Asterisk servers),
you can associate a separate Oreka server to each box in the cluster. You do so by setting
oreka.rtserver to cluster and then entering the live streaming port for each
member of the cluster, as follows:
oreka.rtserver=cluster
oreka.rtserver.aleph=http://ork_aleph:59120/?type=stream&localparty=#AGENTEXT#
oreka.rtserver.beth=http://ork_beth:59120/?type=stream&localparty=#AGENTEXT#
In this example, all calls processed on server "aleph" will be searched on server "ork_aleph",
while all calls processed on server "beth" will be processed on server "ork_beth".

Using multiple Oreka servers with UniqueID

If you have a set of Oreka servers that are not linked one-by-one to a set of Asterisk boxes,
you can associate a separate Oreka server to each call in the cluster, by prepending
a digit to the call’s UniqueID that will be used to know on which server each call
is being handled. You do so by setting oreka.rtserver to chandigit and then entering
the live streaming port for each member of the cluster, as follows:
oreka.rtserver=chandigit
oreka.rtserver.1=http://ork_aleph:59120/?type=stream&localparty=#AGENTEXT#
oreka.rtserver.2=http://ork_beth:59120/?type=stream&localparty=#AGENTEXT#
In this example, all calls which UniqueID starts wilth "1" will be handled by the
"ork_aleph" server, and all calls which UniqueID start with "2" will be
queries on the "ork_beth" server.

Expanded properties

The following properties are expanded in the Oreka live listening URL:
	
AGENTEXT is the numeric extension an agent is logged on from

	
AGENTCODE is the code of the agent

Chapter 23. Exporting call sets from QueueMetrics

There is a need to make it possible for external parties to review the call processing
 as done on QueueMetrics or do an external QA monitoring on them; and similarly, there
 is an opportunity for a QueueMetrics to do the same thing for external third-parties.
In order to make this possible, we need to have a way for QueueMetrics to import/export
both call records (with associated audio/video recordings where present) and related QA data.
23.1. Exporting calls - an overview

The main problems that arise from exporting calls are:
	
Selecting the set of calls that have to be exported, and

	
Retrieving all audio calls for export

We need to be able to select freely a number of calls for export, given
one or more export criteria; we want to be able to review the results before
they are final, and we want to exclude specific calls when reviewing.
The retrieval of audio causes a similar problem; first, audio retrieval was
not really made for batch access, so seek times for individual files may be
in the order of one per seconds; secondarily, those files may well require a
large disk space when preparing the batch.
The call export feature works in batches, that is, at any given time there
are a set of batches that an administrator creates and that are to be exported.
Each of them has a name and a status.
This is the life-cycle of a batch:
	
An administrator creates a batch for a given data export needed and gives it
 a meaningful name, e.g. "Client X week 02/10". The batch is now in state Open.

	
Users holding the correct key will be able to add calls to the batch, that is,
 when they run a report in QM, on the "Taken calls" page they see a button that
 invites them to add the selected set of calls to the open batches. They
 can repeat this process as many times as it is needed. If the same call
 is added multiple times to the batch, it only appears once.

	
When the batch is ready, the administrator closes it. When the state is Closed,
 it is not possible anymore to add calls to that batch.

	
When the batch is Open or Closed, it is possible for the administrators to see
 the list of calls in the batch and to listen to their audio/video attachments.
 Individual calls may be flagged as "Do not send" - those calls will appear in
 the batch but will not be show in the outgoing records.

	
When the batch is finalized, the administrator will flag it as "Ready to send".
 Batches that are "Ready to send" are actually being built by QM - it may take
 a while to create them and download the audio files required.

	
When the batch is finished processing, it will appear as "Sent".

	
A batch can be deleted at any time by the administrator, unless it is in
 status "Ready To Send".

The graph provides a visual representation of the whole process:
[image: ./Pictures/ExpCall_rete091231.dot.png]

The process of building a batch may take a while - therefore there is a transaction
that simply keeps displaying a page in a browser that shows a progress bar
while the project is being exported.

23.2. Exporting calls in practice

In order to export calls, an administrator must first create a batch. To do this,
they go to the Home Page → Import/Export calls:
[image: ./Pictures/ExpCall_jobs.png]

From here you select List Export Jobs.
[image: ./Pictures/ExpCall_joblist.png]

You can then create a new job.
When configuring the job, you have to specify:
	
A name for the job. This will be the name of the folder that will be created
 including the call details and the audio files.

	
A security key so that only some agents can add calls to this job.

	
An export folder - it can be the same for all jobs, and be on the server QM
 is on. It should be writable by the java process that runs QM,.

	
An implementor, that is, a data format for Manifest file of the job.
 See below for more details.

	
If the implementor requires them, you can specify a set of parameters.

These properties can be changed through the lifetime of the job.
From now on, users accessing the Detail of Taken Calls will see a gadget by the
end of the page like the one shown here:
[image: ./Pictures/ExpCall_gadget.png]

This basically lets you add all the calls above to the export job you select. If the
export gadget should not be visible, you have to add it manually to the current report
(its code is OD02 - see Block OD02
Section 6.2.2, “OD02 - Add to export job”).
After you add sone calls to a job, the import transaction will confirm the add through
a popup screen that displays the number of calls imported and the number of calls
rejected (because they were already a member of this job). Only jobs in state Open will
be availble for adding calls.
You can now see a list of calls from the Export Jobs page:
[image: ./Pictures/ExpCall_list.png]

You can search calls within the current job and toggle their inclusion
in the exported list by clicking on the reload icon next to each call.
When the job is ready for shipment, the administrator first has to Close
it and then to Export it. This will take a while. Audio files will be retrieved
through the curremtly configured Pluggable Module for audio records and
will be saved in the job folder.

23.3. Output format

Thought the actual attributes used are based on the Implementor module used,
the following are common attributes.
Batch attributes
	
Name

	
Disk path (must be accessible to Java)

	
Created by, on date

	
Closed by, on date

	
Sent by, on date

	
Video (yes/no)

	
QA (yes/no)

Each call in the batch has the following attributes:
	
Type: "T" taken "L" lost (initially we will only have Taken calls)

	
Cluster-ID

	
Server-ID

	
Entered at

	
Wait time

	
Talk time

	
Caller

	
Agent

	
Queue

	
Call status

	
Call status type (e.g Sale)

	
N. of audio pieces

	
Names of the audio pieces, comma-separated (a single call may have multiple recordings)

Batch disk format
A call batch appears on disk as a folder under the system call batch folder.
The folder is created if not present (it must be in a Java-writable location).
When the batch is in status "Ready to send", the audio files are copied to
this folder; at the end of it all, a manifest file that includes the details is written.
Each downloaded audio file is renamed in order to be unique and
coherent, typical file names may be:
0000123-1.wav
0000123-2.mov
Both files are about the 123rd call, the first one being an audio recording and
the second one a video recording.
When the batch is in status "Sent" QM no longer cares about the disk
representation - it can be moved, sent as FTP, compressed and encrypted, whatever.
Manifest file format
The manifest file format should be chosen by the sysadmin - it is implemented as
an abstract class for ease of change.
	
It will be called Manifest.xml

	
It will include a set of <call> entries including all
 data as per the previous section "Batch attributes"

23.4. Available implementors

HTTP file transfer
This is the basic implementor and produces an XML file.
HTTP MP3 file transfer
This implementor does two things:
	
produces a basic manifest

	
retrieves QA valuation data if present

	
if audio files are in MP3, will insert or set ID3v2 tags so that the title of
 the MP3 contains information about the call.

The following ID3 tags are created:
	
Call details

	
caller id

	
queue

	
dnis

	
call lenght

	
start time

	
lenght

	
agent

	
Call status

	
Date of Grading

	
Time of Grading

	
Grader ID and/or Name

	
Overall Grade

	
Graders Comment

	[image: [Note]]	
	this implementor DOES NOT transcode files to MP3 - they must already be
 in MP3 format or you should provide an external batch script to do the conversion.
 More details are provided in the following paragraph.

23.5. MP3 conversions on the fly

QueueMetrics lets you able to perform an external batch script call in order to convert
call files to different format like, for example, wav files in mp3s.
This feature is applied only for export jobs implemented with the "HTTP MP3 File Transfer" object.
No external calls will be made for "HTTP File Transfer" enabled export jobs.
Assuming to have this type of export job parameters:
Job name: MyJob
Export folder (on server): /var/spool
Implementor: HTTP MP3 File Transfer
the work flow followed by QueueMetrics, for HTTP MP3 File Transfer enabled jobs, will be like depicted below.
For each call in the job and for each file associated to a specific call:
	
The file will be stored on server folder /var/spool/MyJob folder

	
A new temporary folder will be created on /var/spool/MyJob folder

	
An external bash script will be called. The script will receive, as parameters:

	
The full file name of the file to be converted

	
The full name of the temporary folder created

	
The name of the job as defined in the job definition page

	
The parameters string as defined in the job definition page

	
The script should convert the file in the preferred format and should place the result in the provided temporary folder.
 QueueMetrics will wait for the conversion termination

	
QueueMetrics will move (not copy) the full conversion result it will find in the temporary folder to the original
 destination folder (in this case /var/spool/MyJob). Please note that there should be more than one file
 resulting in the conversion (like, for example, a preview quality and a hi-res quality .mp3 files)
 and QueueMetrics will copy all of that.

	
The temporary directory will be removed by QueueMetrics

	
QueueMetrics will publish in the manifest all the files found in the temporary folder.
 These files will be associated to the specific call and the number of chunks published in the manifest will reflect this.

When all files in the job are properly downloaded and converted, QueueMetrics will add all relevant QA
information only to files with name ending with .mp3
Please note that:
	
The external script to be called by QueueMetrics should be specified in the configuration.properties
 files through the key "export.conversionCommand". It should be executable by TomCat.
 If no key was defined, the HTTP MP3 File Transfer will skip all actions specified in the 2, 3, 4, 5, 6 steps above described
 (i.e. it will simply download the files and apply QA informations to eventually present .mp3 files)

	
If the external script is not present in the server and/or QueueMetrics is not able to run it, this will
 be signaled in the <errors> field present in the manifest (one for each call).
 In this case QueueMetrics will publish in the manifest the original file name.

	
QueueMetrics will not delete the original file from the /var/spool/MyJob folder.
 If you need to have it deleted, your conversion script should do it.

	
QueueMetrics will not publish the original file name in the manifest, unless if exceptions
 were raised in the conversion/move process. If you need to have the original file published in the manifest,
 your script should move (not copy) it to the temporary folder.

	
If some exception is raised when moving files or calling the external bash script, QueueMetrics will publish
 the original file name in the manifest.

	
If the conversion script generates a (set) of filename with name(s) already present in the /var/spool/MyJob folder,
 QueueMetrics will rename it (them) prepending the name(s) with a random 5 digit number followed by an underscore sign.
 The new name(s) will be published in the manifest

To summarize the overall process, a simple example of working environment is provided:
In the configuration.properties is the key:
export.conversionCommand=/usr/local/apache-tomcat-5.5.25/webapps/ROOT/testbatch
and in the /usr/local/apache-tomcat-5.5.25 is an executable testbatch script:
[root@qmmachine ROOT]# ls -la testbatch
-rwxr-xr-x 1 root root 87 Mar 10 05:17 testbatch
In this simple example, the batch script copies the original file in the temporary folder (with a not unique name in this example)
#!/bin/bash
$1 is the source file
$2 is the output directory
$3 is the job name
$4 is the parameter field defined in the job definition page

cp $1 $2/testresult
The resulting working folder will contain something like:
....
-rw-r--r-- 1 root root 408516 Mar 10 05:18 17619_testresult
-rw-r--r-- 1 root root 50110 Mar 10 05:18 18542_testresult
-rw-r--r-- 1 root root 884372 Mar 10 05:18 18795_testresult
-rw-r--r-- 1 root root 4740 Mar 10 05:19 20110304_084640-99.wav
-rw-r--r-- 1 root root 419784 Mar 10 05:19 20110304_084640.wav-99-1.avi
....
And the manifest something like:
....
<call>
<files>testresult,2071_testresult</files>
<errors></errors>
<chunks>2</chunks>
<uniqueid>3033212900899824</uniqueid>
<videocall>true</videocall>
<callid>4006</callid>
....

Chapter 24. Configuring Asterisk for QueueMetrics

QueueMetrics is designed to analyze queue_log data provided by any Asterisk
installation; the following guidelines will help you to make the most out of it.
24.1. Configuring queues to report exit status

In the following example:
	
all calls are monitored, i.e. saved to disk;

	
if after 60 seconds on the queue the call is unanswered, the call is routed to voicemail and this
 event is reported correctly by QM;

	
there are two levels of agents: agents 302 and 303 will answer the queue (level 1); only if none of them
 is available the call is routed to agent 301 (level 2). If nobody is available, the queue keeps trying until timeout is reached.

	
Agents can transfer the call to other extensions by pressing the "#" key;

	
Agents terminate the current call by pressing the "*" key.

Extensions.conf
[q-my-sample]
; ...queue description.....
exten => s,1,SetVar(MONITOR_FILENAME=/var/spool/asterisk/QSAMPLE-${UNIQUEID})
exten => s,2,Queue(q-sample|nt|||60)
exten => s,3,Playback(voicemail-invitation)
exten => s,4,VoiceMail,s2001
Queues.conf
[q-sample]
music = default
announce = q-sample-announce
strategy = roundrobin
timeout = 60
retry = 5
maxlen = 0
announce-frequency = 0
announce-holdtime = no
monitor-format = wav
monitor-join = yes
queue-youarenext = silence
queue-thankyou = q-sample-thankyou
member=>Agent/302,0
member=>Agent/303,0
member=>Agent/301,1
Make sure that you do not forget the explicit timeout when calling the Queue() command
from extensions.conf, or queue
timeouts will not be logged by Asterisk and therefore not reported by QM. A
patch that corrects this Asterisk behaviour can be found at
http://bugs.digium.com/view.php?id=5422 .

24.2. Configuring URLs to be launched by the agent real-time page

The URL should be embedded in the Queue() command as prescribed by Asterisk:
exten => s,7, Queue(myqueue|nt|http://mysite/app?uid=${UNIQUEID}&clid=${CALLERID}||60)
This command launches the queue "myqueue" and launches the webapp located http://site/app passing the following parametrs:
	
uid is the Asterisk internal unique call id

	
clid is the Caller*ID for the current call

The URL will appear on a clickable link on the Agent’s page.
If you set the property realtime.agent_autoopenurl to true, whenever the Agent’s page is reloaded,
the most recent unopened URL is launched automatically.

24.3. Listening to recorded calls using QM

	
Make sure it is legal
 This is not strictly a QM issue, but before attempting to record all calls
 on a queue, you should consult a lawyer to make sure it is legal in your
 country. It would be probably fair enough to tell your operators their
 calls are being recorded and to add a voice message telling the customers
 their call will be recorded.

	
Tell Asterisk to record all calls
 To record all calls add something like this to extensions.conf:

exten => s,1,SetVar(MONITOR_FILENAME=/var/spool/asterisk
 /q/QSAMPLE-${UNIQUEID})
exten => s,2,Queue(q-sample|nt|||60)
This way all sound files are stored under /var/spool/asterisk/q/ with the name of
the queue (QSAMPLE) followed by the call id.

	
Tell QueueMetrics where to look for the calls
 You should set up the WEB-INF/configuration.property file in QM like this:

default.monitored_calls=/var/spool/asterisk/q/
When looking for the recording of a call, QM will explore all files contained in /var/spool/asterisk/q/
 and any directories below for a file name containing the right call ID. It
 might find more than one file name and will display all of them. It is
 possible that sometimes Asterisk fails at mixing together the two files
 (Asterisk records separate files for the caller and the agent, and then
 tries to mix them together at the end of the call) so you will find two
 files named -in and -out instead. The search behaviour can be customized -see
 Chapter 22, Listening to calls using Pluggable Modules (PM).

	
Tell QueueMetrics you have the right to listen to the calls
 Any user willing to listen to calls must hold the key CALLMONITOR. This is to make
 sure that only authorized personnel can listen to recorded calls. If you
 do not have this key, no sound files will be shown.

	
Make sure QueueMetrics has the right to read saved calls
 You should make sure that the process running QM (i.e. the servlet
 container, might be Tomcat, Jetty, or something else depending on your
 setup) has the rights to access the files where recorded calls are stored.

 If using a separate web server, it should not be able to access those
 files directly, as QM will pipe out files only after enforcing security
 checks.

	
Debug tip: see which files QM sees
 There is a hidden transaction in QM made to debug call listening. To launch it, logon
 as an administrator and type the transaction "qm_show_files.do" in the URL bar instead of the page name.
 You will be lead to a page showing the filenames QM can read from the hard
 disk, whether the current user has the CALLMONITOR key and the search path
 as defined in default.monitored_calls.

24.4. Using AddQueueMember for dynamic agents

AddQueueMember is a command that lets you add dynamic agents to a queue. Its main advantage is
that you can add channels, i.e. terminals, so you’ll have most of the
advantages of agents without the performance and stability problems that the
agents module may cost in very large systems.
Its disadvantage is that it does not log the agent login/logoff to the queue_log,
and so programs that analyze the queue log data like QueueMetrics will not see
agents logging on and off. This is a major organizational problem in a
real-world call center, where tracking agent logons and logoffs is vital to the
smooth running of the operations.
The answer is to add a fake queue_log data for each logon and logoff. For QM, it is
important to avoid multiple logoff lines and to compute online permanence with
logoffs.
To do the adding, you dial 422XX, where XX is your local extension; the same happens with
423XX to be logged off.
; Add Member - 422

exten => _422XX,1,Answer
exten => _422XX,2,AddQueueMember(my-queue,SIP/${EXTEN:3})
exten => _422XX,3,System(echo "${EPOCH}|${UNIQUEID}|NONE|SIP/${EXTEN:3}|\
 AGENTLOGIN|-" >> /var/log/asterisk/queue_log)
exten => _422XX,4,Set(DB(dynlogin/log_Agent-${EXTEN:3})=${EPOCH})
exten => _422XX,5,Hangup

; Remove Member - 423
exten => _423XX,1,Answer
exten => _423XX,2,RemoveQueueMember(my-queue,SIP/${EXTEN:3})
exten => _423XX,3,Set(ORGEPOCH=${DB(dynlogin/log_Agent-${EXTEN:3})})
exten => _423XX,4,Set(RV=$[${EPOCH} - ${ORGEPOCH}])
exten => _423XX,5,GotoIf($["${RV}" = "0"]?8:6)
exten => _423XX,6,System(echo "${EPOCH}|${UNIQUEID}|NONE|SIP/${EXTEN:3}|\
 AGENTLOGOFF|-|${RV}" >> /var/log/asterisk/queue_log)
exten => _423XX,7,Set(ORGEPOCH=${DB_DELETE(dynlogin/log_Agent-${EXTEN:3})})
exten => _423XX,8,Hangup
With this setup, we verified that the queue_log can be analyzed by QueueMetrics and the
dynamic agent shows up fine (albeit with the name of a terminal, like SIP/23,
instead of the usual Agent/23 string, but you can modify it in QM itself).
This setup might even be used in a call center where agents are not actually used but
queues connect straight to terminals to "fake" agent logon/logoff, in
order to have such data available for reporting.

24.5. Defining outbound queues (campaigns)

Standard Asterisk queues are, by definition, inbound queues; they accept a number of incoming
calls, let them wait in line and distribute them to various agents based on the
queue logic.
To make it possible to analyze outbound calls with QM, we added the concept of a
"campaign" or "outbound queue", that is a set of calls made by different agents that are
working for the same purpouse. Of course there is no such thing as an outbound queue in
Asterisk, so we have to run a special piece of dialplan or an AGI script to produce
the same information on queue_log for outbound calls as it is automatically produced for inbound
queues.
As this only regards the actual Dial(…) statement that Asterisk runs, it is possible to
have different sources of numbers to be dialled by agents on outbound queues;
they might enter the number on their keypad, or use the telephone, launch them
from the Agent’s page or maybe use a predictive dialler for the task.
QueueMetrics does not care, as long as the correct events are logged.
24.5.1. Placing outbound calls

If you run Asterisk 1.4 or newer and want to place outbound calls, you use
an example script supplied within the extensions_queuemetrics.conf; it should
be imported by the main Asterisk configuration.
After this, if you place a call directed to Local/XXXYYYYYYY@queuedial, where XXX is the code
for the campaign and YYYYYY…. the number to be dialled, a call will be created
and logged as Agent/ZZZ, where ZZZ is the caller-id of the extension placing the call.
You may want to tweak the following supplied piece of dialplan to adapt it to your needs:
[queuedial]
exten => _XXX.,1,Set(QDIALER_QUEUE=q-${EXTEN:0:3})
exten => _XXX.,n,Set(QDIALER_NUMBER=${EXTEN:3})
exten => _XXX.,n,Set(QDIALER_AGENT=Agent/${CALLERID(num)})
exten => _XXX.,n,Set(QDIALER_CHANNEL=SIP/${QDIALER_NUMBER})
exten => _XXX.,n,Set(QueueName=${QDIALER_QUEUE})
exten => _XXX.,n,MixMonitor(Q-${QDIALER_QUEUE}-${UNIQUEID}.WAV|b|)
;exten => _XXX.,n,Set(CALLERID(all)="1234567890" [image: 1]) ; Uncomment and change this if you need to set your own caller ID
exten => _XXX.,n,Goto(qm-queuedial,s,1)
You can/should modify the following variable definitions:
	
QDIALER_QUEUE is taken from the first three digits. If you have ony one campaign system-wide,
 you may want to hardcode this value so the user needs not input it.

	
QDIALER_AGENT is the Agent code that the call will be logged under. The simplest approach
 is just to use the extension’s caller-id, under the hypotesis that Agent/123 works at SIP/123.
 You may also look up under Asterisk who is the agent working at a given extension - an example is
 given in the [queuedial-loggedon] context in the same file.

	
QDIALER_CHANNEL is the channel that you have to dial to call out. Will likely be something

	
You can comment out the MixMonitor line if you don’t need call recordings.

Please note that:
	
The outbound queue should not be defined in Asterisk, but must be in QueueMetrics.

	
When running a QueueMetrics analysis, some values are their own mirrors: like, the Caller*ID of an
 incoming call is the number dialled of an outbound queue, while the Agent field is the caller.

	
It is possible to do live listening of outgoing calls (see Section 24.6, “Enabling ACD call attempts recording on Asterisk 1.0 and 1.2”).

	
It’s possible to specify your caller ID uncommenting the line where the Set function is called and,
obviously, changing the caller ID information to properly set it as required. The same modification is needed
for the extensions 28 definition present in the same file.

24.5.2. Placing outbound calls through the AGI script

This section applies only if you run a version of Asterisk 1.0 or 1.2; for 1.4 or newer,
please use the dialplan logic supplied in the file extensions_queuemetrics.conf.
The AGI script to be used instead of the Dial(…) command is available in the standard
QM distribution and can be used in the following way:
exten => xxx,1,DeadAGI(queueDial.agi|Number|DialString|QueueName|Agent)
The following parameter have to be passed by dialplan logic:
	
Number: the number you are trying to dial. Needed for correct logging only.

	
DialString: the actual Asterisk dial string, like SIP/34, or maybe IAX2/usr:pass@iax.server/8885551234. If you
 need additional parameters in the Dial() command, modify the AGI script
 manually.

	
QueueName: the outbound queue to be used for accounting. Must be defined in
 QueueMetrics and must not exist in Asterisk!

	
Agent: the agent placing the call, e.g. Agent/123

A working example might be the following:
exten => 426,1,DeadAGI(queueDial.agi|34|SIP/34|queue-out-1|Agent/101)
The terminal SIP/34 is dialled and the resulting events are logged as if generated
by Agent/101 working on queue-out-1.
Please note:
	
The outbound queue should not be defined in Asterisk, but must be in QueueMetrics.

	
When running a QueueMetrics analysis, some values are their own mirrors: like, the Caller*ID of an
 incoming call is the number dialled of an outbound queue.

	
When monitoring calls in real-time, it is impossible to distinguish calls waiting to be answered
 from calls in conversation. This is an Asterisk limitation, as the
 generated events are not provided in real-time. Those values are anyway
 correct in the reports.

	
Extensive debugging output is available at /var/log/asterisk/agi-log.txt

	
It is possible to do live listening of outgoing calls (see Section 24.6, “Enabling ACD call attempts recording on Asterisk 1.0 and 1.2”).

24.6. Enabling ACD call attempts recording on Asterisk 1.0 and 1.2

To get the AGENTATTEMPT code to work, it is necessary to patch the Asterisk module called
app_queue.c in order to track down the required information. In order to
perform this task, you must be confident with general Unix project patching and
recompiling. It is advisable that Asterisk be shut down before applying the
patch.
In order to apply the patch, just copy the file app_queue_agentattempt.patch
found under WEB-INF/README/ to the apps/ directory of your Asterisk
project, and then issue the following statement:
patch -p0 < app_queue_agentattempt.patch
As long as you see no errors, the patching process worked successfully. It’s now time to
rebuild the app by issuing a general make statement from the main Asterisk
directory.
Restart Asterisk and check that the queue system is still working fine.
To see if the patch was correct, try dialling a queue and see that Asterisk writes
AGENTATTEMPT records to the queue_log file.
QueueMetrics starts to analyze AGENTATTEMPT verbs when the configuration key default.ignoreRingNoAnswer is set to true.

24.7. Enabling ACD call attempts recording on Asterisk 1.4

Asterisk 1.4 is natively able to produce the RINGNOANSWER log entry that servers the
same purpose of AGENTATTEMPT, so no patching is necessary. In this case QueueMetrics reports in the realtime
page the last agent that had not picked up the phone when ringing.
QueueMetrics starts to analyze RINGNOANSWER verbs when the configuration key default.ignoreRingNoAnswer is set to false.
Is possible to have the AGENTATTEMPT information in a not patched Asterisk 1.4 with some modifications in the dialplan. This option
is limited to people not using the hotdesking feature. For more information on that, please refer to the QueueMetrics advanced configuration manual.

24.8. Listening to live calls: Unattended Call Monitoring

In order to implement this feature, QueueMetrics follows the following steps:
	
It will try to dial the channel defined in the property callfile.monitoring.channel
 by passing the local extension. This should make your local phone ring.

	
Once the call is picked-up, it will try to dial 11@queuemetrics (if the call is
 inbound) or 14@queuemetrics (if the call is outbound) in order to start the ChanSpy()
 monitoring and will pass along all required variables to match the requested call.

To enable unattended audio monitoring for inbound calls, you’ll have to edit the Asterisk dial-plan in
order to include the [queuemetrics] context.
	
Make sure that the queuemetrics context exists and
 that the extensions 10, 11 and 14 are defined for it. See Appendix C, The [queuemetrics] context

	
Make sure that the channel defined in the property callfile.monitoring.channel
 is set to Local/$EM@from-internal/n (in this example, your telephone would be
 known by Asterisk as something like 105@from-intenal).

	
Make sure that the extension/context are set to 11/queuemetrics
 (the unattended audio monitoring endpoint).

	
Make sure that the callfile.dir property points to a valid callfile directory,
 and that will be writable by QueueMetrics. As a (now preferred)
 alternative you may enter a Monitor URI in the format tcp:user:pass@server; in this case QM will not attempt to
 generate a call-file but will use the Manager command to create an
 equivalent call instead.

	
Make sure the callfile.monitoring.enabled configuration property is set to true

	
Make sure your users hold the MON_AUDIO key

	
Important: make sure that each agent will have their local extension set in QueueMetrics; usually entering "-" will
 be enough. If this is not set, the icon will not appear.

	
Now, when you click on the icon, a callfile will be generated and call snooping will start.

To enable unattended call monitoring for outgoing calls as well, you’ll have to set the
piece of dial-plan referenced by the callfile.outmonitoring…
properties.
Outgoing calls placed though queueDial.agi
will usually be listened to by attaching to the local SIP/XXX or Local/XXX
channel of the calling agent and not to the standard Agent/XXX channel used for inbound, so a different piece of dial-plan
will be used. Note that in order for QueueMetrics to reference the outgoing
calls, you must tell it that queue direction is Outgoing.
See also Appendix C, The [queuemetrics] context for an example of implementing Asterisk code for inbound and outbound call monitoring.
It is possible to use different PMs to handle different live audio - see Chapter 22, Listening to calls using Pluggable Modules (PM).
	[image: [Caution]]	
	if you pass an empty variable to the ChanSpy() command, it will let the user listen to any channels on the system.
 This may be a major security issue. So if you edit the supplied dialplan to match your configuration, make sure that you
 add a check in case a computed channel to listen on might be empty!

24.9. Enabling VNC Monitoring

To enable VNC monitoring you will first need a VNC server that is running on each
client’s machine and that will serve the current layout.
You will also have to create a web page with a VNC client that may accept a VNC URL and
show a VNC client (there are a number of Java-based VNC clients that can be
displayed as an applet).
Configure the VNC URL as something like: http://myserver/vncpage.php?ip=192.168.3.17
Where the PHP page will connect the VNC applet to the server located on address
192.168.3.17
Make sure that your users hold the MON_VNC key in order to be able to access this
feature.
As an alternative, we have some clients that use a simpler setup with each machine
having their own copy of UltraVNC - http://ultravnc.sourceforge.net/
- and each machine running a web server with the locally-configured Java
viewer. The VNC url is then the address of the local machine; when a person
connects to it, s/he is asked for a password and then the screen is displayed
through a Java applet. They report this setup to be very simple and working
very well.

24.10. Enabling Agent’s page actions

In order to enable actions on the Agent’s page:
	
Check that all actions are enabled in the properties, this means that callfile.actionname.enabled=true

	
Check that a Manager API is configured correctly for the server

	
Check that the dialplan on the server contains the appropriate commands for this action. A sample
 [queuemetrics] context you can include easily within a standard dialplan
 using call-back agents is provided as a reference.

As of QM release 12.10 it is possible to set input validation for both the agent code and the extension. As an example, by setting the key realtime.agentRegexp=1\\d\\d you are defining that the agent code must start with a one and cannot be more than 3 digits, while by setting the key realtime.extensionRegexp=\\d\\d\\d\\0 you define that the agent extension must be four digits and must end with a zero. Please note that the backslash in the regexp has to be written as \\ in the configuration.properties file.

24.11. Enabling XML-RPC call listening and streaming

It is possible to run remote audio monitoring of both completed and ongoing calls
using third party monitoring tools, for example OrecX. As QueueMetrics has no
way of knowing the internal details of such applications, we made it possible
to call an external XML-RPC server (we offer a stub written in PHP, but it can
be written in any language and reside on any server, as long as it uses an
XML-RPC library) that will basically pass back to QM the URLs required to
perform the required task.
In order to enable this, we first tell QueueMetrics to use the XML-RPC Pluggable Modules
for both call listening and streaming:
audio.server=it.loway.app.queuemetrics.callListen.listeners.ClassicXmlRpcRecordings
audio.liveserver=it.loway.app.queuemetrics.callListen.RTlisteners.ClassicXmlRpcListenerRT
The XML-RPC server will be set by setting its URL in a configuration property, like for
example:
default.audioRpcServer=http://127.0.0.1/xmlrpc/xmlrpc_audio_server.php
The server must implements three XML-RPC calls called:
	
QMAudio.findStoredFile
This function is used to find and play back a stored audio file, by returning the
URL of a player that will play it or the audio file itself.
This function has in input the following parameters:

	
$ServerID: ignore for now

	
$AsteriskID: The Asterisk call-id, as written in the second field of queue_log

	
$QMUserID: the ID of the current QM user

	
$QMUserName: the name of the current QM user

and it must return the following values:
	
$FILE_FOUND : If the file was found or not (maybe it was not recorded)

	
$FILE_LISTEN_URL : an URL to open up a player for this call

	
$FILE_LENGTH : size of the audio file (displayed as returned)

	
$FILE_ENCODING : encoding of the audio file (eg mp3)

	
$FILE_DURATION : duration of the audio file

In case multiple values are to be returned (because e.g. the call is split into multiple recordings)
then the following format must be used:
	
$FILE_FOUND : true

	
$FILE_LISTEN_URL : "MULTI:http://url1 http://url2 http://url3"

	
$FILE_LENGTH : "100k 50k 120k"

	
$FILE_ENCODING : "mp3 mp3 mp3"

	
$FILE_DURATION : "1:00 0:30 1:20"

As you can see, the listen URL starts with the string "MULTI:" and has multiple values separated with space.
The other parameters also hold multiple values separated by space.

	
QMAudio.listenOngoingCall
This function is used to query for an ongoing inbound call. If found, QM will launch
a new popup to open the player which URL is returned.
This function has in input the following parameters:

	
$ServerID: ignore for now

	
$AsteriskID: The asterisk call-id, as written in the second field of queue_log

	
$Agent: the name of the agent being monitored e.g. "agent/101"

	
$QMUserID: the ID of the current QM user

	
$QMUserName: the name of the current QM user

and it must return the following values:
	
$CALL_FOUND: If the call was found or not

	
$CALL_LISTEN_URL : the URL of the player

	
$CALL_POPUP_WIDTH, $CALL_POPUP_HEIGHT: width and height of the popup being opened. Currently
 a double popup is opened.

	
QMAudio.listenOngoingCallOutgoing
This function is used to query for an ongoing outgoing call. If found, QM will
launch a new popup to open the player which URL is returned. The parameters are
the same as for QMAudio.listenOngoingCall.

To make implementer’s life easier, we provide a simple XML-RPC stub server under WEB-INF/mysql-utils/xml-rpc that can be used as a starting point:
no need to handle the XML-RPC stuff, just change the results of the two
supplied functions and data goes back to QueueMetrics.

24.12. Enabling call outcomes

A call tracking code is a code to be input by a user telling the status of a call, be
it inbound or outbound. This status code is a string (though we suggest to use
numeric status codes, in order to make it easy to input them using a telephone
keypad) and may be input either when the call is ongoing or after a short while from its end.
The queue_log entry looks like the following one:
1234|1231.1|NONE|Agent/1234|CALLSTATUS|21
This will set the CALLSTATUS to "21" for the call which Call-ID is "1231.1"
it may be an open call or it may be terminated by no longer than 30 minutes.
If it is not possible to force the Call-ID, a second version of the verb is available:
1234|2222.3|NONE|Agent/1234|CALLSTATUS|21|1231.1
This has exactly the same meaning; the second Call-ID passed as a parameter will
override the original one.
If you prefer, you may log the queue name instead of "NONE" field shown above; in any
case QM will ignore this piece of information.
The following rules apply:
	
A CALLSTATUS row must be set after the call is started or it’s terminated; in any other case it’s
 simply discarded

	
There may be multiple CALLSTATUS rows for the same Call-ID; in this case, the last one overrides
 pervious codes.

	
The CALLSTATUS must be passed within 30 minutes from the end of a call.

	
CALLSTATUS for a non-existent Call-ID will be discarded

	
Even if a queue reset is detected, CALLSTATUS for existing Call-ID are applied

The agent may either be a fill "Agent/xxx" string or the valid name of an Asterisk
channel. It is acceptable to use a generic channel name instead of the specific
one, i.e. "SIP/123" and "SIP/123-abcd" are equivalent.
The sample [queuemetrics] context that comes with
QueueMetrics can be used as a starting point to output such data.
24.12.1. Keeping the UNIQUEID of the call when setting status code

One of our clients has successfully implemented Call Outcomes by using AEL.
In the Hangup-Extension, use:
 if("${MEMBERINTERFACE}" != "" && "SIP/${CALLERID(ani)}" != "${MEMBERINTERFACE}") {
 // to be able to record QueueMetrics call outcome later
 Set(GLOBAL(queue_last_call_${MEMBERINTERFACE:4})=${UNIQUEID});
 }
The outcome is recorded like this:
_#XX = > {
 // ${user_name} contains the extension number of the agent
 Answer();
 if ("${queue_last_call_${user_name}}" != "") {
 QueueLog(NONE,${queue_last_call_${user_name}},SIP/${user_name},CALLSTATUS,${EXTEN:1});
 Set(GLOBAL(queue_last_call_${user_name})=);
 Playback(beep);
 } else {
 Playback(beeperr);
 }
 Hangup();
 }

24.13. Enabling pause codes

A pause reason code is a code to be input by a user telling the reason why a pause was
started. It should be ideally input together with the decision to go on pause,
though QueueMetrics will accept the code and will attach to the correct pause
even if the pause is resumed, as long as no other pause is started. The reason
code is a string - though we suggest to use numeric status codes, in order to
make it easy to input it using a standard telephone keypad.
The format is the following one:
1234|1231.1|NONE|Agent/1234|PAUSEREASON|21
This will set the pause reason to "21" for the pause that is either going on or has just finished. If the code is
input after over 30 minutes from the end of the last pause, it is discarded.
The following rules apply:
	
A PAUSEREASON row must be set after the agent’s pause is started or it’s terminated; in any other case
 it’s simply discarded

	
There may be multiple PAUSEREASON rows for the same pause; in this case, the last one overrides
 pervious codes.

	
The PAUSEREASON must be passed within 30 minutes from the end of a pause; otherwise it will be silently
 discarded.

	
PAUSEREASON for a non-existent agent pause will be discarded.

	
If a pause extends over multiple call sessions, the PAUSEREASON will be correctly set only for
 sessions terminating after the PAUSEREASON has been set.

	
Even if a queue reset is detected, PAUSEREASON for existing pause are applied

	
The agent may either be a fill "Agent/xxx" string or the valid name of an Asterisk channel. It is
 acceptable to use a generic channel name instead of the specific one, i.e.
 "SIP/123" and "SIP/123-abcd" are equivalent.

The sample [queuemetrics] context that comes with QueueMetrics can be used as a
starting point to output such data.
	[image: [Note]]	
	Since Asterisk 1.6, it is possible to pass a pause reason code to the
 native Pause application. QueueMetrics will handle this correctly, and allows
 mixing the two methods as you best see fit.

24.14. Closing ongoing calls

It sometimes happens that Asterisk will not log the call termination records for a
call; as QM is based on the logged events, a call missing the call closure log
will linger on forever in the realtime screen (or at least the maximum time
allowed by the …) and will appear as Ongoing or Not answered yet in the
historical reports.
Since version 1.4.5 of QueueMetrics, it is possible to manually close a call from
either the historical reports or the real-time screen. In order for this to
work:
	
You must be running with MySQL storage or clustered storage

	
Your user must own key CLOSECALLS

When this is done, open calls on the reports will show a red scissor icon:
[image: ./Pictures/image201.png]

And the same will happen for the real-time screen:
[image: ./Pictures/image203.png]

By clicking on that icon, a popup will appear that will ask for the length the call should
be closed to. This length refers to the wait duration if the call is not
answered and the conversation time if the call is answered. It is possible to
change that from the default 5 seconds by setting a configuration property.
If the call has already been closed in the meantime, or you’re doing this operation twice,
QM will report that the call has already been closed.
	[image: [Important]]	
	if you do this on calls that are still ongoing, you will risk having duplicate data on the report. So don’t use this
feature unless you know what you are doing. The required security key must be manually assigned only to trusted users.

24.15. Tracking DNIS and IVR information

	[image: [Tip]]	
	In order to track IVR information, it would be advisable
 to follow the newer logging format defined in Section 9.2, “Implementing IVR tracking”.

In order to keep track of DNIS and IVR information that relates to
each call, you have to write special records on the queue_log file that
QueueMetrics parses.
This is very easy to do, e.g. imagine you have a piece of dialplan where you
are going to call queue q-sample and you have the DNIS code in the MYDNIS
dialplan variable, and the sequence of keys pressed as MYIVR:
exten => s,n,........
exten => s,n,QueueLog(q-sample,${UNIQUEID},NONE,INFO,DID|${MYDNIS})
exten => s,n,QueueLog(q-sample,${UNIQUEID},NONE,INFO,IVR|${MYIVR})
exten => s,n,Queue(q-sample|nt|||60)
exten => s,n,........
There is no predefined format for DNIS and IVR information; QueueMetrics just handles
it as free-form text strings. It can be optionally decoded by creating values
in the IVR and DNIS configuration pages.
You can output only one record, or both, or none, depending on what you need.

24.16. Enabling Hotdesking in the agent page

Since the demise of AgentCallBackLogin, it has been hard to do "hotdesking" in
Asterisk - that is, having agents that work on queues because of their competences and not
because they are sitting at a given extension.
With QueueMetrics 1.6.1, hotdesking is very easy to implement and it has no downsides, because:
	
it is completely transparent to Asterisk

	
you can emulate the single-sign-on behavior of AgentCallBack and still have
 the flexibility of adding/removing members as needed on a queue by queue basis.

	
call recordings, agent monitoring and all other functionalities are unaffected

Requirements:
	
QueueMetrics 1.6.1 or newer

	
MySQL storage model

	
Asterisk 1.4 or 1.6

24.16.1. How it works

Set the following properties within the configuration.properties file, as follows:
default.queue_log_file=sql:P001 <-- change as needed
callfile.dir=tcp:admin:amp111@127.0.0.1 <-- change as needed
default.rewriteLocalChannels=true
callfile.agentlogin.enabled=false
callfile.agentlogoff.enabled=false
default.hotdesking=86400
Make sure that extensions_queuemetrics.conf is loaded in the Asterisk dialplan
(you need to use the extensions_queuemetrics file that comes with QM 1.6.1 or
newer).
This setup means that we access the queue_log file through the database,
connect to Asterisk over AMI to send commands, rewrite agent codes, do not use
Agentcallback-style agents and enable hotdesking.
Now we use a piece of dialplan like this one when we associate an agent to a
queue:
Imagine we have AGENTCODE set to 200 (the agent’s login code) and AGENT_EXT set
to 123 (thi sis the SIP extension code):
....
exten => 35,3,QueueLog(NONE,${UNIQUEID},Agent/${AGENTCODE},HOTDESK,SIP/${AGENT_EXT})
exten => 35,4,AddQueueMember(myqueue,SIP/${AGENT_EXT})
....
This logs on Agent/200 to queue "myqueue", tracking him as SIP/123. Note that
from the point of view of Asterisk, we only see that extension 123 is made a
member of the queue.
When you logoff, pause, unpause agents, you always work at the SIP level (the
actual extension that is linked to the queue) so there is no need to change
anything.
If you use the QueueMetrics Agent’s page, you can do logon/logoffs/pauses from
the buttons by the top of the page; this lets you add an agent to all queues at
once, like you used to do with AgentCallBackLogins, and still retain the
flexibility to change that at runtime.

24.16.2. Example hotdesking configuration

In the following sections, we sumamrize the changes that have to be
made to an existing system to enable hotdesking.

24.16.3. Changes to configuration.properties

Add/change the default.hotdesking property to 86400. This property enables hotdesking
and lets the parse "look back" up to 1 day (change as needed).
default.hotdesking=86400
Add/change the sections below:
callfile.agentpause_ht.enabled=true
callfile.agentpause_ht.channel=Local/32@queuemetrics/n
callfile.agentpause_ht.extension=10
callfile.agentpause_ht.context=queuemetrics

callfile.agentunpause_ht.enabled=true
callfile.agentunpause_ht.channel=Local/33@queuemetrics/n
callfile.agentunpause_ht.extension=10
callfile.agentunpause_ht.context=queuemetrics

callfile.agentaddmember_ht.enabled=true
callfile.agentaddmember_ht.channel=Local/35@queuemetrics/n
callfile.agentaddmember_ht.extension=10
callfile.agentaddmember_ht.context=queuemetrics

callfile.agentremovemember_ht.enabled=true
callfile.agentremovemember_ht.channel=Local/37@queuemetrics/n
callfile.agentremovemember_ht.extension=10
callfile.agentremovemember_ht.context=queuemetrics
This code specifies the Asterisk extensions that QueueMetrics will call for each button
present in the agent live page when hotdesking is enabled.
Change the realtime.agent_button_x.channel key to the value Local/[EM]@from-internal
This last option is needed only if you use custom agents buttons to dial out extensions
and should be repeated for each dial-enabled button. In the code below, a valid example
for the button 4 is reported:
realtime.agent_button_4.enabled=true
realtime.agent_button_4.caption=Secretary
realtime.agent_button_4.url=
realtime.agent_button_4.channel=Local/[EM]@from-internal
realtime.agent_button_4.ext=200@queuedial
	[image: [Tip]]	
	if you use a channel like Local/123@from-internal as the hotsedking extension,
 remember to tun off local channel rewriting first, or it will not work.

24.16.4. Changes to extensions_queuemetrics.conf

Here should be defined the Asterisk extensions used by QueueMetrics to perform actions
triggered from the agent live page.
Add to this file the code reported below:
; extension 32: agent pause with hotdesking (with pause code)
exten => 32,1,Answer
exten => 32,2,NoOp("QM: Pausing Agent/${AGENTCODE} at extension SIP/${QM_AGENT_LOGEXT} \
 with pause reason '${PAUSEREASON}' made by '${QM_LOGIN}' ")
exten => 32,3,PauseQueueMember(,SIP/${QM_AGENT_LOGEXT})
exten => 32,4,System(echo "${EPOCH}|${UNIQUEID}|NONE|Agent/${AGENTCODE}|PAUSEREASON|${PAUSEREASON}" \
 >> /var/log/asterisk/queue_log)
exten => 32,5,Hangup

; extension 33: agent unpause with hotdesking
exten => 33,1,Answer
exten => 33,2,NoOp("QM: Unpausing Agent/${AGENTCODE} at extension SIP/${QM_AGENT_LOGEXT} \
 made by '${QM_LOGIN}' ")
exten => 33,3,UnpauseQueueMember(,SIP/${QM_AGENT_LOGEXT})
exten => 33,4,Hangup

; extension 35: agent addqueuemember with hotdesking (for asterisk v1.4+)
exten => 35,1,Answer
exten => 35,2,NoOp("QM: AddQueueMember (asterisk v1.4+) Agent/${AGENTCODE} at extension \
 SIP/${QM_AGENT_LOGEXT} on queue ${QUEUENAME} made by '${QM_LOGIN}' with prioritylabel \
 '${QM_AGENT_PRIOLBL}' and prioritynum '${QM_AGENT_PRIONUM}'")
exten => 35,3,Macro(queuelog,${EPOCH},${UNIQUEID},NONE,Agent/${AGENTCODE},\
 HOTDESK,SIP/${QM_AGENT_LOGEXT})
exten => 35,4,AddQueueMember(${QUEUENAME},SIP/${QM_AGENT_LOGEXT})
exten => 35,5,Hangup

; extension 37: agent removequeuemember with hotdesking (for asterisk v1.4+)
exten => 37,1,Answer
exten => 37,2,NoOp("QM: RemoveQueueMember (asterisk v1.4+) Agent/${AGENTCODE} at extension \
 SIP/${QM_AGENT_LOGEXT} on queue ${QUEUENAME} made by '${QM_LOGIN}'")
exten => 37,3,RemoveQueueMember(${QUEUENAME},SIP/${QM_AGENT_LOGEXT})
exten => 37,4,Hangup
Please note that the extensions_queuemetrics.conf file that ships with 1.6.1 already has these
changes embedded.
In order to have the hotdesking working a complete QueueMetrics restart and
Asterisk reload should be performed.

24.17. Running Asterisk 1.8 with QueueMetrics

QueueMetrics is compatible with Asterisk 1.8 but you need to properly set it.
The first requirement is related to a strange behavior found in Asterisk 1.8.0 and 1.8.1 that prevents Asterisk
to properly log all queue activity until a a reload command is issued from the CLI.
To fix this problem we had to change the code in the logger.c file found in the main subfolder present in the asterisk sources, near the line 396, in order to have something similar to what is listed below:
 if (qlog)
 fclose(qlog);

 {
 char tmp[4096];
 snprintf(tmp, sizeof(tmp), "%s/%s", ast_config_AST_LOG_DIR, queue_log_name);
 qlog = fopen(tmp, "a");
 }
Then we had to rebuild asterisk and to reinstall it.
The next step is to replace the extensions_queuemetrics.conf file with the specific version for Asterisk 1.8.
To do this, you need to copy the extensions_queuemetrics_18.conf replacing the one present into the asterisk configuration folder then reload the dialplan from the CLI.
The extensions_queuemetrics_18.conf is targeted to Asterisk 1.8 with hotdesking enabled.
	[image: [Note]]	
	This applies ONLY to some earlier versions of Asterisk 1.8

24.18. Handling Agents priorities on queues

Starting from QueueMetrics 1.6.3 is possible to define priorities when logging agents in a specific queue. The priority associated to each agent is dependent on how the agent was
configured in the queue (main, spill or wrap).
	
QM_AGENT_PRIOLBL is set to "U" when the queue is not assigned to the agent, "M" when the queue is a normal working queue for the agent (Main), "W" when the agent is set as Wrap for the queue, "S" when the agent is set as Spill for the queue.

	
QM_AGENT_PRIONUM is set to 0 when the queue is not assigned to the agent or the queue is a normal working queue for the agent; 1 when the agent is set as Wrap for the queue, 2 when the agent is set as Spill for the queue.

24.19. Configuring the AMI connection

QueueMetrics bases its reports on data generated from the Asterisk queue_log file; still, it sometimes needs
to send commands to Asterisk in order to performs some actions, e.g. log on agents, or listen to live calls.
In order to perform such commands, two things are required:
	
A working AMI connection should be present

	
The extensions_queuemetrics.conf file should be included in the PBX’s dialplan

For historical reasons, the default way QueueMetrics used to send commands was to generate Asterisk call files;
now this method is obsolete and the correct one is to set-up an AMI connection.
In order to set up an AMI conenction, you have to set the following property like e.g.:
callfile.dir=tcp:admin:amp111@127.0.0.1
The AMI URL is in the following format: tcp:username:password@server:port
	
username: This is the AMI username

	
password: This is the chosen "secret"

	
server: This is the IP address of the server, or 127.0.0.1 if the same server.

	
port: This part is optional; if not present will default to 5038.

All three fields are mandatory. The password is sent over a clear-text TCP connection, so make sure to
protect it using e.g. a VPN tunnel if it is to traverse public networks.
	[image: [Warning]]	
	Username and password should be made only of letters and digits; no other character should be used.

The configuration above should be matched by the configuration in Asterisk’s own manager.conf file,
that should look like the following one:
[general]
 enabled = yes
 port = 5038
 bindaddr = 0.0.0.0
 webenabled = no

[admin]
 secret = amp111
 deny = 0.0.0.0/0.0.0.0
 permit = 127.0.0.1/255.255.255.0
 read = system,call,log,verbose,command,agent,user,originate
 write = system,call,log,verbose,command,agent,user,originate
In order to make testing easier, QueueMetrics includes a test tool that checks whether the
current connection is working or not; see Checking an Asterisk Manager connection
Section 21.21.2, “Checking an Asterisk Manager connection”
for details.

24.20. Listening to encrypted recordings

QueueMetrics allows to listen to recordings that are stored in an encrypted format.
This works by invoking a custom-supplied filter that will decrypt the recording on-the-fly
before QM streams it back to the user.
	[image: [Warning]]	
	This is possible only for recordings that are read from disk and streamed by QM;
 it does not work for recordings that are streamed by a third-party player (e.g. Oreka),
 which will usually implement its own encryption scheme.

24.20.1. What is a filter

In order to decrypt a call, QueueMetrics uses a filter, i.e. a program (usually a script) that,
given the filename that it needs to decrypt, will output the decrypted file to STDOUT. This way
the decrypted file is never saved on disk.
	[image: [Warning]]	
	Encrypting and decrypting recordings on-the-fly can impose a severe load on your
 QueueMetrics server, as encryption is usually CPU-intensive.

A sample filter may look like the following script:
PASSW=myPassword
echo $PASSW | gpg --passphrase-fd 0 --batch --decrypt $1
As the filter is not dependent on any specific encryption technology (public key, symmetric keys, etc)
QueueMetrics is able to adapt to whatever technology suits you best.
Please note that the called script does not receive a password - it must be able to run the
decryption internally. Most encryption technologies have the concept of "secure password stores",
so that you can avoid storing the password in a plain-text format.

24.20.2. Setting up a filter

In order for QM to decrypt a file, it must match two conditions:
	
It must end in .crypt, as appended to the natural extension of the file (e.g. the encrypted
 version of a file named 'audio.mp3' must be called 'audio.mp3.crypt')

	
The configuration property 'audio.decrypt' must point to the decryption filter,
 as in the example below.

The script to be run must be readable and executable by the QueueMetrics process, as in:
audio.decrypt=/encryptionTools/decryptGPG.sh
When an encrypted file is found by QueueMetrics, it is displayed with a "lock" icon.
By clicking on it, the file is decrypted on the server and streamed back in an
unencrypted format.
If a file is not encrypted, QueueMetrics will stream it back without attempting any decryption.

24.20.3. Encrypting calls

As Asterisk does not currently offer any facility for storing encrypted recordings, audio files must be
encrypted on a periodical basis.
	
Every so often, a process runs and checks for unencrypted recordings
 in the audio destination directories

	
Every file found is first encrypted, and if the encrypted file was actually created,
 then its unencrypted version is removed.

We offer a sample encryption routine in the files 'encryptAllGPG.sh' and
'encryptGPG.sh' that can be used as an example to deploy your own script.
	[image: [Note]]	
	The sample encryption and decryption scripts are available under
 the 'WEB-INF/mysql-utils/audio-encryption' folder in QM. They are
 meant as a reference blueprint only and may not be suitable for the required Corporate security standards.

24.21. The QueueMetrics watchdog page

QueueMetrics has a watchdog page - that is, if you request a page called: '/sysup.jsp', you get
an answer that is a valid JSON object of the format:
{
 "state" : "QMUP",
 "ramFreeMb" : 118,
 "ramTotalMb" : 152,
 "ramMaxMb" : 1818,
 "generatedOn" : "Tue Nov 05 16:44:30 CET 2013",
 "version" : "13.12.01 build 607"
}
If the page contains the string QMUP, this means that QueueMetrics is working and able to talk to the database.
The other information on memory usage can be used to be stored in a long-term tracking system (e.g. Nagios, Zabbix,
Pandora….) in order to make it possible to understand if there are memory issues.
We offer a sample watchdog script that checks whether QM is running or not and restarts it - you can find it at
'WEB-INF/mysql-utils/restart/watchdogQm.pl'.

Chapter 25. For more information…

To know more about QueueMetrics in your specific setting or inquire about commercial
licences, please feel free to contact Loway.
The latest version of QueueMetrics can be found on the home page located at the address http://queuemetrics.com
A number of how-to’s and recipes about QueueMetrics are available on AstRecipes, see http://www.astrecipes.net
There is a QueueMetrics users forum for mutual support, troubleshooting and ideas at http://forum.queuemetrics.com

Appendix A. Default users

The following users come pre-configured in the default database.
	Login 	Password 	Enabled by default? 	Explanation
	demoadmin
	demo
	Yes
	The sample admin user

	demouser
	demo
	Yes
	The sample CC manager

	demovisitor
	demo
	No
	A sample visitor

	demosupervisor
	demo
	No
	A sample supervisor

	robot
	robot
	No
	A sample robot

	webqloader
	qloader
	No
	Access point for wqloaderd

	Agent/101
	999
	Ye
	A sample agent

	Agent/102
	998
	Yes
	Another sample agent

Make sure you change their default passwords before letting users access QM!
Please note that some users re present but NOT ENABLED by default with the default database
schema supplied with QM. You need to enable the manually if you need them.

Appendix B. Security keys

The following security keys are defined:
	KEY 	MEANING
	USER
	Must be held by any valid user

	USRADMIN
	User can edit other users and classes

	USR_AGENT
	User can edit agents

	USR_QUEUE
	User can edit queues

	USR_LOCATION
	User can edit locations

	USR_OUTCOME
	User can edit call outcomes

	USR_PCODE
	User can edit pause codes

	USR_MYSQL
	User can see the MySQL database page

	USR_QAEDIT
	User can edit the set of Quality Assessment metrics

	USR_AGROUPS
	User can edit agent groups

	USR_IVR
	User can edit the list of known IVR selections

	USR_DNIS
	User can edit the list of known DID/DNIS

	REALTIME
	User can see real-time stats

	RTLIVE
	User can access the Live stats

	QUEUE_AN
	User can run reports

	AGREP
	User can filter reports by agent

	AGENT
	User is an agent and sees agent page

	CALLMONITOR
	The user can listen to a recorded call

	CALLMONITOR_ADDTAGS
	The user can add markers to recorded calls

	CALLMONITOR_DELTAGS
	The user can delete markers from recorded calls

	MON_AUDIO
	The user can monitor a real-time call

	MON_VNC
	The user can monitor an agent’s screen via VNC

	ROBOT
	User may launch ROBOT transactions.

	CHPASSWD
	User can change his own access password

	SUPERVISOR
	User is a supervisor and can run the supervisor’s report

	QA_TRACK
	User can enter Quality Assessment data

	QA_REPORT
	User can run Quality Assessment reports

	QA_REMOVE
	User can delete Quality Assessment reports

	CLOSECALLS
	This user can close ongoing calls from the Real-time or the historical stats page.

	AGAW
	This user can access AGAW facades (for agents).

	AGAW_ADM
	This user can access the AGAW administration screens

	AGAW_REP
	This user can access the AGAW supervisor screen

	BRO_MSG
	This user can send broadcast messages to agents

	MON_IM
	This user can start an IM chat to an agent

	CONFIG
	This user can start the auto configuration wizard (attended and unattended mode)

	USR_AGROUPS
	This user can edit custom agent groups

	PAYROLL
	This user is allowed to check the payroll page

	PAYROLL_REMOVENOTE
	This user is allowed to remove a note in the payroll page

	QLOG_EDIT
	This user is allowed to edit the queue_log records

	QLOG_LNGR
	This user is allowed to edit session data by making it longer (they must hold QLOG_EDIT as well)

	USR_REPORTS
	Edit QueueMetrics reports

	USR_REPORTS_EXPORT_EDIT
	Edit PDF and XML export jobs

	USR_REPORTS_EXPORT
	This user is allowed to export whole reports in PDF and XLS

	TASKS
	User can see/edit tasks he sent and he received

	TASKS_VIEWALL
	User can see all tasks present in the database

	BATCH_ADM
	Audio export - Creates and closes batches

	BATCH_ADD
	Audio export - This user can add calls to an open batch

	BATCH_VIEW
	Audio export - This user can see batches

	BATCH_DEL
	Audio export - This user can remove calls from a batch.

	QA_PERF_TRACK
	Can run Agent Performance Tracking

	QA_PERF_RULES
	Can define rulesets for Agent Performance Tracking

	QA_CALREP
	Access to Grader calibration reports

	TASKS
	User can see their tasks

	TASKS_REP
	User can access the tab showing Task Statistics

	TASKS_VIEWALL
	User can see other people’s tasks

	USR_SYSLOG
	User can view the system’s audit log

	KEYUPDATE
	User can install a new QueueMetrics activation key

	QA_GRADER
	Allows access to the Grader’s page and related statistics

	QUEUE_LST
	Allows direct access to the call list (skipping the Reports page)

	VISITOR
	Grants access to a partial set of statistics and features such as the Remote Monitoring page. The VISITORS class holds this key (plus USER MON_VNC MON_AUDIO).

	RT_ADDMEMBER
	User can add agents to a queue from the realtime page

	RT_REMOVEMEMBER
	User can remove agents from a queue from the realtime page

	RT_PAUSEAGENT
	User can pause agents from the realtime page

	RT_UNPAUSEAGENT
	User can unpause agents from the realtime page

	RT_SENDTEXTAGENT
	User can send a SMS to the agent’s phone from the realtime agent (Asterisk 10+ only)

	RT_HANGUPCALL
	User can hangup a live call from the realtime page

	RT_TRANSFERCALL
	User can transfer a call to a specific extension from the realtime page

	EDIT_CFG
	User can edit the local configuration.properties file

	SSAREPORT
	Enable Self Service reporting for an Agent

	NEWAGENTPAGE
	Turns on the new experimental Agent page

Appendix C. The [queuemetrics] context

QueueMetrics
is able to trigger a number of advanced functionalities, like audio monitoring,
clients logging in, going on pause, etc. right from the Asterisk dialplan.
	[image: [Tip]]	
	You can check the current dialplan of a working Asterisk system from the Section 21.21, “Using the DbTest Diagnostic Tools” page.

In order to make this portable and easy to understand, we suggest to create a special
context named queuemetrics in your dialplan where QueueMetrics will trigger functions through a callfile. An
example file that is ready-to-use for most call centres can be found under WEB-INF/mysql-utils/extensions-examples - see
the included README file for more details.
Whenever an action is invoked by a logged-on user, the following variables are set at the channel level:
	
QM_LOGIN is the login of the current Qm user asking for the action to be performed

	
QM_CLASS is the current class the requesting user is in.

This makes it possible to perform addirtional security checks or auditing at the Asterisk level, but is not
used by the supplied dialplan.
We therefore define a number of functions in the terms of extension relative to
the context queuemetrics, as follows:
	
10: Dummy extension
Used only because a call-file requires two end-points in any case. Define as:

exten => 10,1,Answer
exten => 10,2,Wait(10)
exten => 10,3,Hangup

	
11: Remote monitoring
This extension makes unattended monitoring of inbound traffic possible through the command ChanSpy(). The variables QM_AGENT_CODE, QM_EXT_MONITOR,
 QM_AGENT_EXT are set, as well as QM_CALLERID, QM_QUEUE and QM_QUEUE_URL. The following example explains how the feature works:

exten => 11,1,Answer
exten => 11,2,NoOp("QM_AGENT_CODE: ${QM_AGENT_CODE}")
exten => 11,3,NoOp("QM_EXT_MONITOR: ${QM_EXT_MONITOR}")
exten => 11,4,NoOp("QM_AGENT_EXT: ${QM_AGENT_EXT}")
exten => 11,5,NoOp("QM_LOGIN: ${QM_LOGIN}")
exten => 11,6,ChanSpy(${QM_AGENT_CODE})
exten => 11,7,Hangup

	[image: [Caution]]	
	this may have important security implications - see Section 24.8, “Listening to live calls: Unattended Call Monitoring”.

	
12: Call status code
This extension logs a calls status code. The variables CALLSTATUS, CALLID, QM_LOGIN and AGENTCODE are
 defined. The following example explains how the feature works:

exten => 12,1,Answer
exten => 12,2,NoOp("QM: Setting call status '${CALLSTATUS}' \
 on call '${CALLID}' for agent '${AGENTCODE}' made by '${QM_LOGIN}'")
exten => 12,3,System(echo "${EPOCH}|${CALLID}|NONE|Agent/${AGENTCODE} \
 |CALLSTATUS|${CALLSTATUS}" >> /var/log/asterisk/queue_log)
exten => 12,4,Hangup

	
14: Remote monitoring of outgoing calls
This extension makes unattended monitoring of outbound traffic possible through
 the command ChanSpy(). The variables QM_AGENT_CODE, QM_EXT_MONITOR and
 QM_AGENT_EXT are set, as well as QM_CALLERID, QM_QUEUE and QM_QUEUE_URL.
 The following example explains how the feature works:

; 14: Remote monitoring of outgoing calls - like SIP/callednumber
exten => 14,1,Answer
exten => 14,2,NoOp("QM_AGENT_CODE: ${QM_AGENT_CODE}")
exten => 14,3,NoOp("QM_EXT_MONITOR: ${QM_EXT_MONITOR}")
exten => 14,4,NoOp("QM_AGENT_EXT: ${QM_AGENT_EXT}")
exten => 14,5,NoOp("QM_CALLERID: ${QM_CALLERID}")
exten => 14,6,ChanSpy(SIP/${QM_CALLERID}|q)
exten => 14,7,Hangup
Please note that you should set the channels SIP/xxxx to the names of your local
 outgoing channel or the name of the local SIP leg of the call.

	[image: [Caution]]	
	this may have important security implications - see Section 24.8, “Listening to live calls: Unattended Call Monitoring”.

	
20: Agent login
This extension logs in a call-back agent. The variables AGENTCODE and AGENT_EXT are defined.
 Please note that for this to work properly, there must be no password set on
 the Asterisk agent.
 The following example explains how the feature works:

exten => 20,1,Answer
exten => 20,2,NoOp("QM: Logging on Agent/${AGENTCODE} to \
 extension ${AGENT_EXT}@sip made by '${QM_LOGIN}'")
exten => 20,3,AgentCallBackLogin(${AGENTCODE}||${AGENT_EXT}@sip)
exten => 20,4,Hangup

	
21: Agent logoff
This extension logs off an agent. The variable AGENTCODE is defined.
The following example explains how the feature works:

exten => 21,1,Answer
exten => 21,2,NoOp("QM: Logging off Agent/${AGENTCODE} \
 made by '${QM_LOGIN}'")
exten => 21,3,System(asterisk -rx "agent logoff Agent/${AGENTCODE}")
exten => 21,4,Hangup

	
22: Agent pause (with pause code)
This extension pauses an agent and sets the pause code. The variables AGENTCODE and
 PAUSEREASON are defined.
The following example explains how the feature works:

exten => 22,1,Answer
exten => 22,2,NoOp("QM: Pausing Agent/${AGENTCODE} with pause \
 reason '${PAUSEREASON}' made by '${QM_LOGIN}'")
exten => 22,3,PauseQueueMember(|Agent/${AGENTCODE})
exten => 22,4,System(echo "${EPOCH}|${UNIQUEID}|NONE|Agent/${AGENTCODE} \
 |PAUSEREASON|${PAUSEREASON}" >> /var/log/asterisk/queue_log)
exten => 22,5,Hangup

	
23: Agent unpause
This extension unpauses an agent. The variable AGENTCODEis defined.
The following example explains how the feature works:

exten => 23,1,Answer
exten => 23,2,NoOp("QM: Unpausing Agent/${AGENTCODE} made by '${QM_LOGIN}' ")
exten => 23,3,UnpauseQueueMember(|Agent/${AGENTCODE})
exten => 23,4,Hangup

	
24 and 25: Agent AddQueueMember
These extensions (targeted to asterisk 1.2 the first, for asterisk 1.4 the second) dynamically add an
agent to the specified queue. The variable AGENTCODE and QUEUENAME is defined.
Only for the extension 25, the variables QM_AGENT_PRIOLBL and QM_AGENT_PRIONUM are set with the information
related to agent priority in the queue: QM_AGENT_PRIOLBL could have the values U, M, W, S, respectively
for agents not assigned in the queue, assigned as main, assigned as wrap, assigned as spill in the queue.
The variable QM_AGENT_PRIONUM has the value 0 for agent not assigned in the queue or assigned as main in the
queue, 1 for agents assigned as wrap, 2 for agents assigned as spill in the queue.
The following example explains how the feature works:

exten => 24,1,Answer
exten => 24,2,NoOp("QM: AddQueueMember (v1.2) Agent/${AGENTCODE} \
 on queue ${QUEUENAME} made by '${QM_LOGIN}'")
exten => 24,3,System(echo "${EPOCH}|${UNIQUEID}|${QUEUENAME} \
 |Local/${AGENTCODE}@from-internal|ADDMEMBER|" >> /var/log/asterisk/queue_log)
exten => 24,4,Hangup

exten => 25,1,Answer
exten => 25,2,NoOp("QM: AddQueueMember (v1.4+) Agent/${AGENTCODE} \
 on queue ${QUEUENAME} made by '${QM_LOGIN}' \
 with prioritylabel '${QM_AGENT_PRIOLBL}' and prioritynum '${QM_AGENT_PRIONUM}'")
exten => 25,3,AddQueueMember(${QUEUENAME}|Local/${AGENTCODE}@from-internal)
exten => 25,4,Hangup

	
26 and 27: Agent RemoveMember
These extensions (targeted to asterisk 1.2 the first, for asterisk 1.4 the second) dynamically remove an
agent to the specified queue. The variable AGENTCODE and QUEUENAME is defined.
The following example explains how the feature works:

exten => 26,1,Answer
exten => 26,2,NoOp("QM: RemoveQueueMember (v1.2) Agent/${AGENTCODE} \
 on queue ${QUEUENAME} made by '${QM_LOGIN}'")
exten => 26,3,System(echo "${EPOCH}|${UNIQUEID}|${QUEUENAME} \
 |Local/${AGENTCODE}@from-internal|REMOVEMEMBER|" \
 >> /var/log/asterisk/queue_log)
exten => 26,4,Hangup

exten => 27,1,Answer
exten => 27,2,NoOp("QM: RemoveQueueMember (v1.4+) Agent/${AGENTCODE} \
 on queue ${QUEUENAME} made by '${QM_LOGIN}'")
exten => 27,3,RemoveQueueMember(${QUEUENAME}|Local/${AGENTCODE}@from-internal)
exten => 27,4,Hangup

	
28: Agent custom dial
This extension lets able the agent to dial extensions through outbound queues from the agent’s live page.
The variable AGENTCODE, EXTTODIAL, and OUTQUEUE is defined.
Is possible to force a specific caller ID uncommenting the queue where the Set function is called and,
obviously, changing the caller ID information to your needs.
The following example explains how the feature works:

exten => 28,1,Answer
exten => 28,n,NoOp("QM: Agent Custom Dial. Dialing ${EXTTODIAL} \
 on queue ${OUTQUEUE} made by '${QM_LOGIN}'")
exten => 28,n,Set(QDIALER_QUEUE=${OUTQUEUE})
exten => 28,n,Set(QDIALER_NUMBER=${EXTTODIAL})
exten => 28,n,Set(QDIALER_AGENT=Agent/${AGENTCODE})
exten => 28,n,Set(QDIALER_CHANNEL=SIP/${QDIALER_NUMBER})
exten => 28,n,Set(QueueName=${QDIALER_QUEUE})
exten => 28,n,MixMonitor(Q-${QDIALER_QUEUE}-${UNIQUEID}.WAV|b|)
;exten => 28,n,Set(CALLERID(all)="1234567890" [image: 1]) ; Uncomment and change this if you need to set your own caller ID
exten => 28,n,Goto(qm-queuedial,s,1)
exten => 28,n,Hangup

	
29: Send SMS to agent’s phones
This extension allows the users holding the proper key to send a short message to the agent’s phone from the
realtime page. This feature is supported by Asterisk revision 10 and later versions and is disabled by default.
Please note that this feature should be supported by the agent’s phone.

exten => 29,1,NoOp("QM: Send Text from Live Page. Sending text to ${EXTTODIAL} made by '${QM_LOGIN}' ")
exten => 29,n,Set(MESSAGE(body)=From: ${QM_LOGIN} - ${MESSAGEBODY})
exten => 29,n,MessageSend(sip:${EXTTODIAL})
exten => 29,n,Hangup

	
30: Hangup a live call
This extension allows the users holding the proper key to send an hangup message to the PBX in order to hangup a live call from
the realtime page.

exten => 30,1,NoOp("QM: Call Hangup made by ${QM_LOGIN} for callID: ${CALLID} with agent code ${AGENTCODE} from extension ${QM_AGENT_LOGEXT}")
exten => 30,n,ChannelRedirect(${CALLID},queuemetrics,10,3)
exten => 30,n,Hangup

	
31: Redirect a live call
This extension allows the users holind the proper key to send a transfer event to the PBX from the realtime page.
This forces the live call to be transferred to a specified extension.

exten => 31,1,NoOp(" QM: Call redirect ,ade by ${QM_LOGIN} for callID: ${CALLID} to extension ${REDIR_EXT}")
exten => 31,n,ChannelRedirect(${CALLID},from-internal,${REDIR_EXT},1)
exten => 31,n,Hangup

	[image: [Warning]]	
	When using AddQueueMember/RemoveQueueMember to dynamically login/out to a queue is mandatory
to match the agent code with their extension; eg. Agent/303 must be sitting at extension 303.

	[image: [Warning]]	
	When using AddQueueMember/RemoveQueueMember to dynamically login/out to a queue the agent pause/unpause
dialplan given must be changed to fit the current agent channels; eg. if Agent/303 is added to the queue

In order to trigger these functions, QueueMetrics need to be able to access the Asterisk
callfile spool, as defined by the callfile.dir
property.. If your Asterisk system is remote, you’ll have to arrange a periodic
file transfer or use a disk share in order to make the above features work.
As an alternative, QueueMetrics may connect to a working Asterisk server over the
Manager interface. See the description of the callfile.dir property for more information.

Appendix D. System preferences

QM stores system-wide preferences in a text file called configuration.properties under WEB-INF. The absolute path of that
file can be found by looking at the directory called System path on the Licence page in QM.
All properties are case-sensitive.
	[image: [Tip]]	
	You can check the current set of system preferences from the Section 21.21, “Using the DbTest Diagnostic Tools” page.

Defaults
	Property name 	Description
	default.queue
	Internal ID (ex. 7, 49….) of the default queue, leave blank for no default queue.

	default.queue_log_file
	Default queue log file.

	default.monitored_calls
	The top level directory where monitored calls are held. All its subdirectories are explored recursively. Do NOT forget to add an ending slash.

	default.webloaderpbx
	Enable or disable the web qloader feedback actions generation. Please refer to the WQLoader USER MANUAL for further information.

	default.areacode_digits
	How many digits to consider as a default area code

	default.start_hour
	Preset start and end hours and number of days for the custom report.

	default.end_hour
	

	default.days
	

	liveclock.enable
	If live clock is enabled, the system clock is synchronized with Asterisk server system clock.

	default.max_realtime_age
	How old a call can be included in real-time report

	default.showQueueComposition
	If true, show the details of the queues composing the aggregate queue; if flase, show only the aggregate queue’s name

	default.useXmlExcel
	True: Generate the Excel file as an XML file (mandatory for UTF charsets); false: generate as an ISO-8859 CSV file

	default.hourly_slot
	How long in minutes is an hourly slot for hourly breakdown. Default 60 minutes (1hr). If set to e.g. 15, calls will be broken down by 15 minute intervals.

	default.useRawAgentSessions
	If true, show all agent sessions. If false, show only agent sessions with at least one call handled. Defaults to false.

	default.closeDuration
	The default duration of a call that is manually closed. This is the wait time for calls that have not been answered and the talk time for calls that have been answered.

	default.crmapp
	If present and not empty it will enable the CRM integration column on the answered/unanswered call details tables.
 The key could be populated with an URL where some tokens will be expanded by the QM engine.
 Valid tokens are [A] (expanded with agent code); [U] (expanded with the asterisk unique ID associated to the call); [S] (expanded with server name);
 [Q] (expanded with queue code); [T] (expanded with call timestamp); [C] (expanded with Caller ID); [D] (expanded with DNIS);
 [I] (expanded with IVR path); [O] (expanded with outcome code); [P] (expanded with call position in queue); [M] (expanded with attempts).
 One example could be:
 http://server/app?agent=[A]&unique=[U]

	default.crmlabel
	If present, used by the Realtime agent page to identify the CRM page on the dropdown menu

	default.websocketurl
	The websocket URL used by the Realtime Agent page softphone. It shold be in the followin form: ws://IPServer:Port/path

	default.sipaddress
	The SIP server name or IP, used by the Realtime Agent page softphone.

	default.rtcWebBreaker
	rtcWebBreaker flag used by the Realtime Agent page softphone. The RTCWeb Breaker is used to enable audio and video transcoding
 when the endpoints do not support the same codecs or the remote server is not RTCWeb-compliant. Valid values are "true" or "false". If not present, the default value is "true".

	default.showAstClid
	If present and set to true it will enable the asterisk unique ID column on the answered/unanswered call details tables.

	default.showSecondsOnTotalCalls
	If present and set to true, the summary report call time figures will be shown in hhmmss format instead of hours format

	default.disablebackhistory
	If set to true, disable the history back navigation button in browsers

	default.secondsServiceLevel
	The default SLA that Traffic Distribution graphs will use (see DD08). Default: 20 seconds

	default.shortCallsLimit
	The default Short Call limit that Traffic Distribution graphs will use (see DD08). Default: 5 seconds

	default.jobmanifest_language
	The language used when generating a manifest file for exported jobs. Tipically it affects the ID3 tags stored in mp3 recorded call files (since QM1.6.2)

	default.pausecoderequired
	If true, agents are required to provide a valid pause reason when entering a pause from the agent page. Default value is false

	default.noncontig.days
	Which days to include in Custom Reports non-contiguous time - (1: Sun 2:Mon) e.g. 23456 means MON to FRI

	default.noncontig.period1.start
	Start and end times (as HH:MM:SS or HH:MM) for non-contiguous time reports

	default.noncontig.period1.end
	See above

	default.noncontig.period2.start
	See above

	default.noncontig.period2.end
	See above

	default.decimalDigits
	Number of digits to display for floating-point numbers - defaults to 1

	default.tasks.pingURL
	If present and enabled, this property allows to specify a URL that is to be queried by the QueueMetrics server every time a task is completed/disputed by a person. All task information is sent to this URL. One example could be: http://server/index.html

	default.searchQA_byCallDate
	Defines if the QA reports should be calculated by call date or by filling form date

	default.timeZoneOffset
	Defines The default time zone offset. Valid values are between -24 and 24 hours (default = 0)

	default.ssarMaxReportPeriod
	Defines the maximum reporting period for a Self Service agent report. Default set to 15 days

	default.export.orientation
	Default page orientation for PDF whole report export buttons (value: portrait or landscape)

	default.displayHomePageNews
	Enable/Disable the QueueMetrics news block present on the home page

	default.disable_directlogin_to_agentpage
	If set to true, users holding AGENT and NEWAGENTPAGE keys are not directed to the Icon page when logging on QueueMetrics (since QM 14.10.5)

SMTP settings
All the settings for your SMTP host. Used by QueueMetrics to send reports by e-mail.
	Property name 	Description
	default.smtphost
	SMTP server host name or IP address

	default.smtpport
	SMTP server host port

	default.smtpfrom
	Sender E-mail address used by QueueMetrics

	default.smtpuser
	Optional username needed to authenticate to the SMTP host

	default.smtpassword
	Optional password needed to authenticate to the SMTP host

	default.smtpssl
	Use SSL when sending mail (value: true or false)

	default.smtpDebug
	SMTP transaction are reported on catalina.out (value: true or false)

Call SLA
It is possible to have a different definition for the inital part of the SLA, having e.g. SLA
computed every 5 seconds up to 30 seconds and every 10 seconds up to 60.
	Property name 	Description
	sla.max_initial_delay
	The max initial delay and interval that will be shown in the SLA graphs

	sla.initial_interval
	

	sla.max_monitored_delay
	The max delay and interval that will be shown in the SLA graph graphs

	sla.interval
	

Parser
The following properties control how QueueMetrics interprets data read from Asterisk. Depending on
the version of Asterisk you are using, they may have to be set differently from the system defaults in
order to get a correct picture of what is going on.
	Property name 	Description
	default.permanentCallbackAgents
	If call-back agents should be considered still logged on after a system reload; the current version of Asterisk will do this automatically. Default: true

	default.considerIncompletetEntities
	If incomplete entities (calls or agent sessions that are in progress at the moment that are in progress at the moment the analysis is being run) should be counted in the reports or not. Default: true

	default.rewriteLocalChannels
	Rewrites queue_log entries in the form Local/xxx@context to Agent/xxx . Default: false.

	default.rewriteLocalWithQueue
	If true, extension Local/123@ext on queue Q1 is read as Agent/Q1-123 . Default false.

	default.joinMultiStintCalls
	If true, multi-stint calls in the current analysis set are joined by default

	default.useEndingChannelName
	If true, the last reference to an agent is used as its name (in case they are different)

	default.stripChannelNames
	If true, anything after the "-" sign is deleted (ie. SIP/203-abcd is read as SIP/203). If false, the agent channel name is loaded as in the queue_log file. Default: true.

	default.ignoreQueueStarts
	If false, agents are logged on and calls closed on QUEUESTART records. Otherwise they will be ignored. Default false.

	default.alwaysLogonUnpaused
	If set to true, when an agent logs on, he will always be unpaused. Default false.

	default.ignoreRingNoAnswer
	If true, the analyzer will ignore the RINGNOANSWER verbs in the queue log in favour of AGENTATTEMPT verbs.

	default.subqueueModeEnabled
	If set to true, all activities on subqueues are reported in the parent queue

	default.exitOnAgentDumpSysCompat
	If true, AGENTDUMP and SYSCOMPAT verbs considered call closure records. If false, they are counted as failed attempts.

	default.maxOngoingWaitTime
	If set > 0, calls having more than the number of seconds of wait time are skipped. Defaults to 0 (all calls counted).

	default.maxOngoingTalkTime
	If set > 0, calls having more than the number of seconds of talk time are skipped. Defaults to 0 (all calls counted).

System administration
The following parameters affect how QueueMetrics interacts with the host system it is running on.
	Property name 	Description
	script.reboot
	The command to restart Tomcat. Must be set if this is wanted.

Layout
	Property name 	Description
	layout.logo
	Your company logo (full or relative path) - shall be resized to be an image 200 x 72. The variable $WEBAPP refers to the local webapp, as an alternative use the full http://.. URL.

	layout.splash
	HTML string displayed on the login page.

	default.noLicenseWarning
	Set to true to disable license expiration notifications on the Home Page.

	default.language
	The default language. Must be one of the installed language packs. Default: en

	default.country
	The default country for the Locale. Must be one of the installed language packs. Default: US

	default.viewTechInfo
	Is it possible to see Tech Info on the licence page and run DBTest?

	url.qm
	The URL of the webapp QM is running under, if not detected correctly.

	url.rss
	The URL of the webapp QM is running under - used for RSS access. Like http://1.2.3.4:8080/qm

	default.displayHomePageNews
	Whether the news block on the home page should appear or not

Database Access
The following properties define the fields used by the table in MySQL storage. See Chapter 20, Monitoring clusters with QueueMetrics for complete information.
	Property name 	Description
	sqlPreset.i.table
	Sets the table name for preset i

	sqlPreset.i.f_time_id
	The time columns.

	sqlPreset.i.use_timestamp
	True: time is a Unix timestamp; False: time is an SQL date-time

	sqlPreset.i.f_call_id
	

	sqlPreset.i.f_queue
	

	sqlPreset.i.f_agent
	

	sqlPreset.i.f_verb
	

	sqlPreset.i.f_partition
	May be left blank for partition-less schemas

	sqlPreset.i.f_data1
	

	sqlPreset.i.f_data2
	

	sqlPreset.i.f_data3
	

	sqlPreset.i.f_data4
	

	sqlPreset.i.f_data5
	

	sqlPreset.i.f_incr
	The order-preserving index column. May be left blank, but this may lead to incorrect results.

Realtime Page
	Property name 	Description
	realtime.calls_invisible
	Is the calls panel in the realtime page invisible by default? 0 false, 1 true

	realtime.agents_invisible
	Is the agents panel in the realtime page invisible by default? 0 false, 1 true

	realtime.members_only
	Are not the only agents to be shown on the realtime page those who are "known" for the queue? 0 false, 1 true

	realtime.refresh_time
	In how many seconds is the realtime page to refresh?

	realtime.use_sql_now
	0: analyze all available data; 1: analyze all data which timestamp is lower than the current NOW() function. Do not change.

	realtime.startHour
	The starting hour of the day, in order to compute realtime report. It can be either a fixed hour (e.g. 3: from 3:00 AM) or a sliding window if prefixes with S (e.g. s3: the last three hours). Default value is 0 (from midnight). A useful value is also -24 (yesterday’s midnight).

	realtime.all_subqueues
	Enable default showing of all subqueues if set to 1

	realtime.waitAlarmOnLiveCalls
	Decide whether to check for alarms on the wait time of ongoing conversations.

	realtime.hideExportButtons
	If true, hide export buttons on the Real-time page. Defaults to false.

	realtime.absolutePauseTimes
	If true, the start of the current pause is shown as an absolute hour; if false, it is shown as the time passed since.

	realtime.calls_invisible.buttonEnabled
	Decide which buttons o the real-time page can be toggled by the user. Buttons not enabled are set to their default value.

	realtime.agents_invisible.buttonEnabled
	

	realtime.members_only.buttonEnabled
	

	realtime.all_subqueues.buttonEnabled
	

	realtime.assignedLocationsOnly
	If true, the user will not be able to monitor without a given location. See page Section 7.4, “Using Locations” for more details.

	realtime.useRowCache
	Cache result objects for the Real-time and Agents page when using SQL or cluster storage. Set to true to enable. Defaults to false.

	realtime.show_incorrect_queue_sets
	If true, queues the agent is working on and he’s a member of are displayed in black; queues the agent is working on
 but he’s not a member of are displayed in brown; any queues the agent is a known member of but he’s not currently logged
 on to are displayed as a tooltip to the gray "Down Arrow" symbol. Default false.

	realtime.preventLoggedAgentInfoChanges
	If true, or missing, the agent cannot change their code and extension if logged on at least one queue

Agent’s Realtime Page
	Property name 	Description
	realtime.max_bytes_agent
	When the real-time page for an agent is computed, the queue_log is NOT read in its entirety but only the last n bytes. In database storage mode, the number of seconds, starting from now and counting backwards, that will be queried for agent events.

	realtime.agent_autoopenurl
	When the real-time page for an agent shows a new call in the call list, and if the call detail contains an URL, this URL will be open in a new browser window.

	realtime.agent_button_X.enabled
	Enable or disable a custom button in the realtime page.
 X shall be an integer between 1 and 4.

	realtime.agent_button_X.caption
	This is the label associated to a button.

	realtime.agent_button_X.url
	Defines the URL that will be opened when the button is pressed. The tokens [A] and [U]
 are expanded by QueueMetrics with, respectively, the Agent’s ID and the most recent call Asterisk Call Unique ID as displayed
 in the call list. If no calls are present, Unspecified will be used instead.

	realtime.agent_button_X.channel
	Defines the first leg to be used in a dial command issued to the Asterisk server when the agent presses the button.
 E.g. Local/\104@from-internal .

	realtime.agent_button_X.ext
	Defines the second leg to be used in a dial command issued to the Asterisk server when the agent presses the button.
 E.g. 200@ext-queue .

	realtime.agent.show_agaw
	Enable or disable the AGAW subset information table present in the agent’s realtime page.

	realtime.dynamicLoginQueues
	In the standard Agent Realtime page defines what queues should be listed in the dropdown when agents log-in/out throug the Add Member/Remove Member button.
 The key should be filled with three optional values as reported below:
 all: The dropdown will show the "All assigned" option followed by the queues assigned to the agent (in QueueMetrics queues configuration) and queues where the agent was not assigned but it’s free to log in dynamically
 registered: The dropdown will show the "All assigned" option followed by the queues assigned to the agent (in QueueMetrics queues configuration)
 assigned: The dropdown will show only the "All assigned" option. In this situation the Add Member/Remove Member buttons behave like the "old" Log on and Log off pushbuttons.
 In the the new Icon panel based Agent Realtime page, the meaning of these settings is slightly different
 because the login panel is different:
 all: The login panel shows all the queues visible by the agent in the available queue list and the agent is able to login on any of the queue
 registered: The login panel shows only the queues assigned to the agent and the agent could login/out on a single queue or on all queues
 assigned: The login panel shows only the queues assigned to the agent and the agent could login/out only on all queues only (in this situation the login panel behave like the "old" Log on and Log off pushbuttons)

	realtime.agentRegexp
	Sets allowed agent codes (e.g. set as "2\\d\\d" to allow agents like "2XX" but not "3XX" or "2X")

	realtime.extensionRegexp
	Sets allowed extension codes. Any other code will be rejected. (e.g. set as "3\\d\\d" to allow extensions like "3XX")

	default.lockedAgentPopupCode
	If true, the agent cannot change their code in the login/logoff/pause pop-ups. Defaults to false.

	realtime.useActivePolling
	Whether to have the client poll the server "behind the scenes" and reload the page when a call is detected. See Section 8.4, “Auto-refreshing the agent’s page: Active Polling”

	realtime.ajaxPollingDelay
	The interval between each successive client poll. The expected delay for calls is one half of this value.

	realtime.all_includes_current_logins
	If true, when logging off from ALL queues, any queue the agent is currently logged on will be disconnected. Default false.

	realtime.agent_background_url
	Default background web page for the realtime agent page. Normally used if no CRM and other background are used. If empty, the standard QueueMetrics background applies.

	realtime.agent_web1_url
	An URL used as first backgound in the Realtime Agent page. The key could be populated with an URL where some tokens will be expanded by the QM engine.
 Valid tokens are [A] (expanded with agent code). See also default.crmapp and default.crmlabel.

	realtime.agent_web1_label
	If present, used by the Realtime Agent page to identify this specific background on the dropdown menu

	realtime.agent_web2_url
	An URL used as second backgound in the Realtime Agent page. The key could be populated with an URL where some tokens will be expanded by the QM engine.
 Valid tokens are [A] (expanded with agent code). See also default.crmapp and default.crmlabel.

	realtime.agent_web2_label
	If present, used by the Realtime Agent page to identify this specific background on the dropdown menu

	realtime.agent_webpanel1_url
	An URL to be presented into the custom web panel in the Realtime Agent page. This URL does not support token expansion.

	realtime.agent_webpanel1_label
	If present, used by the Realtime Agent page to enable and identify the custom web panel on the dropdown menu

	realtime.assertExtensionNotInUse
	Before logging an agent in (in hotdesking mode) makes sure the extension is not in use.
 This option runs an analysis behind the scenes, so use it sparingly as will increase server load.

	realtime.agentPausedOnLogin
	When an agent logs in, if she is currently not working on any queues, pause them with the "autopauseCodeLogin" code.
 If the agent is currently working on some queues and paused, and adds
 new queues to their set, a pause is forced to make sure the Asterisk state is consistent on all queues.
 This option runs an analysis behind the scenes, so use it sparingly as will increase server load.

	realtime.autopauseCodeLogin
	The pause code to use for autopauses on login

Asterisk Interaction
	Property name 	Description
	callfile.dir
	The call-file directory Asterisk uses to generate calls based on .call files.
 Must be writable by the Java process. Default _/var/spool/asterisk/outgoing As an alternative,
 you may enter a Manager interface URI here, in the format _tcp:user:password@server
 If you do, QM will not generate call-files but will use the manger interface to generate calls.
 The same field is used by the asterisk configuration wizard when "Single Machine AMI" was selected as source.

	callfile.monitoring.enabled
	If unattended audio monitoring is enabled on this system. Default true.

	callfile.monitoring.channel
	The channel, and extension@context that will be called to implement the unattended audio monitoring functionality. Do not forget the trailing /n in the channel. A number of variables act as placeholders to be substituted by the actual data Asterisk is using: $AG: the current agent; $AE: the agent’s extension; $EM: the monitoring extension; See Section 24.8, “Listening to live calls: Unattended Call Monitoring” for further information.

	callfile.monitoring.extension
	

	callfile.monitoring.context
	

	callfile.agentpause.enabled
	This function is used to start a pause from the Agent’s page and to set its Pause Code - see the sample dial plan provided.

	callfile.agentpause.channel
	

	callfile.agentpause.extension
	

	callfile.agentpause.context
	

	callfile.agentunpause.enabled
	This function is used to end a pause from the Agent’s page - see the sample dial plan provided.

	callfile.agentunpause.channel
	

	callfile.agentunpause.extension
	

	callfile.agentunpause.context
	

	callfile.agentlogin.enabled
	This function is used to log in an agent from the Agent’s page - see the sample dial plan provided.

	callfile.agentlogin.channel
	

	callfile.agentlogin.extension
	

	callfile.agentlogin.context
	

	callfile.agentlogoff.enabled
	This function is used to log off an agent from the Agent’s page - see the sample dial plan provided.

	callfile.agentlogoff.channel
	

	callfile.agentlogoff.extension
	

	callfile.agentlogoff.context
	

	callfile.calloutcome.enabled
	This function is used to set the call outcome code from the Agent’s page - see the sample dial plan provided.

	callfile.calloutcome.channel
	

	callfile.calloutcome.extension
	

	callfile.calloutcome.context
	

	callfile.agentdial.enabled
	This function is not implemented yet.

	callfile.agentdial.channel
	This function is not implemented yet.

	callfile.agentdial.extension
	

	callfile.agentdial.context
	

	callfile.outmonitoring.enabled
	This function lets you monitor outgoing calls using a different piece of dial-plan, as outgoing channel names might be different from incoming ones.

	callfile.outmonitoring.channel
	

	callfile.outmonitoring.extension
	

	callfile.outmonitoring.context
	

	callfile.agentaddmember.enabled
	This function is used to dynamically add an agent to a specific queue from the Agent’s page - see the sample dial plan provided.

	callfile.agentaddmember.channel
	

	callfile.agentaddmember.extension
	

	callfile.agentaddmember.context
	

	callfile.agentremovemember.enabled
	This function is used to dynamically remove an agent from a specific queue from the Agent’s page - see the sample dial plan provided.

	callfile.agentremovemember.channel
	

	callfile.agentremovemember.extension
	

	callfile.agentremovemember.context
	

	callfile.customdial.enabled
	This function lets able an agent to dial through one outbound specific queue - see the sample dial plan provided.

	callfile.customdial.channel
	

	callfile.customdial.extension
	

	callfile.customdial.context
	

Real-Time Sounds
	Property name 	Description
	sound.yellowAlarm
	Sound to be played if a yellow alarm is triggered. Can be either an absolute URL or a relative path

	sound.redAlarm
	Sound to be played if a red alarm is triggered. Can be either an absolute URL or a relative path

Cluster configuration
	Property name 	Description
	cluster.servers
	A set of servers, which names must be used for subsequent properties

	cluster.servername.manager
	The manager API for this server, in the format tcp:user:pass@server.
 This field is also used by the asterisk autoconfiguration wizard when "Cluster AMI" source was selected.

	cluster.servername.queuelog
	The queue log partition to use, in the format sql:P001

	cluster.servername.monitored_calls
	The directory where monitored calls for this server can be found. If it starts with "http", an XML-RPC server to query this information

	cluster.servername.callfilesdir
	The directory in which callfiles must be generated for this sever. Usually leave blank.

	cluster.servername.audioRpcServer
	The URL of an XML-RPC server to be used for audio monitoring

	cluster.servername.agentSecurityKey
	The key with which this cluster entry must be protected on the Agent’s page

	cluster.servername.websocketurl
	The websocket URL used by the Realtime Agent page softphone for the selected server. It shold be in the followin form: ws://IPServer:Port/path

	cluster.servername.sipaddress
	The SIP server name or IP, used by the Realtime Agent page softphone for the selected server

	cluster.servername.rtcWebBreaker
	rtcWebBreaker flag used by the Realtime Agent page softphone for the selected server. The RTCWeb Breaker is used to enable audio and video transcoding
 when the endpoints do not support the same codecs or the remote server is not RTCWeb-compliant. Valid values are "true" or "false". If not present, the default value is "true".

Audio Monitoring
	Property name 	Description
	audio.server
	The PM to use for listening to recorded calls.

	audio.liveserver
	The PM to use for listening to live calls.

	default.audioRpcServer
	The URL of an external XML-RPC server for both listening of recorded calls and live call monitoring.

	audio.lookBack
	How many hours to check for midnight crossing. Used by the LocalFilesByDay PM.

	audio.decrypt
	The streaming decryption filter for encrypted recordings.

	audio.html5player
	Plays audio in the browser using an HTML5 audio player. Defaults to false.

Misc
	Property name 	Description
	manager.dump
	By setting this property to true, the dialog between Asterisk and QM used to show the Live! Page is dumped to the Catalina.out log file. This makes it possible to send it over to Loway for debugging purpouses.

	default.skip_task_on_qagrading
	If not present or set to false, a new task will be sent to the graded agent each time a new qa form will be completed. If present and set to true, no tasks will be sent.

	export.conversionCommand
	If present, this specify the batch script (full) name to be called by the MP3 HTTP Transfer implementor for export tasks.

AGAW configuration
	Property name 	Description
	dbmaint.agaw_oldestRun
	Oldest obsolete run to keep when running a database optimization, in minutes

	dbmaint.agaw_oldestLog
	Oldest obsolete log to keep when running an optimization, in minutes

	dbmaint.agaw_oldestBroadcast
	Oldest obsolete broadcast entries to keep when running an optimization, in minutes

Autoconfiguration Wizard
	Property name 	Description
	default.autoconf.source
	Defines the default source that will be selected in the dropdown list on the wizard configuration page.
 It could assume the following values: file for File sources; ami for Single Machine AMI;
 amic for Clustered Machines AMI; rtdb for Asterisk Realtime Database;
 quef for Asterisk Queue Log file

	default.autoconf.fileagents
	Defines the default agents file definition will be shown in the configuration wizard page and will be read by
 the configuration wizard unattended mode

	default.autoconf.filequeues
	Defines the default queues file definition will be shown in the configuration wizard page and will be read by
 the configuration wizard unattended mode

	default.autoconf.fileusers
	Defines the default users file definition will be shown in the configuration wizard page and will be read by
 the configuration wizard unattended mode

	default.autoconf.filequeuelog
	Defines the default queue log file will be shown in the configuration wizard page and will be read by
 the configuration wizard unattended mode

	default.autoconf.realtimedrv
	Defines the database technology used by asterisk to read/write the realtime database (as Java Driver package)
 For MySQL the default value is com.mysql.jdbc.Driver

	default.autoconf.realtimeuri
	Defines the realtime database location and authentication parameters in jdbc format.

Obsolete parameters
	Property name 	Description
	default.showLostCallsWhenFiltering
	If true, lost calls are shown when running a report in filter mode. This is usually false, as all lost calls would be shown even if you run a report for a single agent.

	
	Removed in version 1.5.1

Appendix E. Icons used by QueueMetrics

The following icons are used in QueueMetrics:
	Icon 	Meaning
	[image: ./Pictures/image205.png]
	Listen to this call

	[image: ./Pictures/image207.png]
	VNC monitoring of this agent

	[image: ./Pictures/image209.png]
	Close this ongoing call

	[image: ./Pictures/image062.png]
	This agent is associated to the queues stored in Asterisk’s internal database

	[image: ./Pictures/image211.png]
	Show multiple stints for this call

	[image: ./Pictures/image213.png]
	Show call detail

	[image: ./Pictures/image214.png]
	Inbound call

	[image: ./Pictures/image215.png]
	Outbound call

	[image: ./Pictures/image217.png]
	Edit

	[image: ./Pictures/image219.png]
	Delete

	[image: ./Pictures/image221.png]
	Edit the set of agents that work on this queue

	[image: ./Pictures/image223.png]
	Export to Excel

	[image: ./Pictures/image225.png]
	Export to CSV

	[image: ./Pictures/image227.png]
	Export to XML

	[image: ./Pictures/image229.png]
	Print this page in printer-friendly mode

	[image: ./Pictures/image231.png]
	Log-off this user

	[image: ./Pictures/image233.png]
	See information on the current user

	[image: ./Pictures/image235.png]
	Yes, this feature is enabled

	[image: ./Pictures/image237.png]
	No, this feature is disabled

	[image: ./Pictures/image239.png]
	Reload the user’s query configuration as when he logged in

	[image: ./Pictures/image241.png]
	Edit / Show a Quality Assessment record

	[image: ./Pictures/image243.png]
	Send broadcast message to all agents

	[image: ./Pictures/image245.png]
	Send broadcast message to all agents belonging to this supervisor

	[image: ./Pictures/image247.png]
	Accepts relative percentages (e.g. 10%)

	[image: ./Pictures/image251.png]
	URL associated to a call

Appendix F. Audit log records

The following details are logged for all events:
	
Date and time of the event

	
User-id that is requesting/causing the event; if this is
 not applicable, a 0 may be logged instead.

	
Container session ID - useful for tracking multiple activities done
 on the same user session and for further cross-matching with system
 logs.

	
An action and zero or more parameters, as detailed below.

The audit table should be secured as needed by the system administrator
by revoking the DELETE grants from it by the QueueMetrics database users.
F.1. Action class: User lifecycle (10XX)

F.1.1. Action: user logon - successful

	
Action-id: 1001

	
Text1: The full login, as a string, of the user logging on

	
Text2: The IP address (dotted quad) of the user’s workstation

F.1.2. Action: user logoff

	
Action-id: 1002

	
Text1: The full login, as a string, of the user logging off

	
Text2: The IP address (dotted quad) of the user’s workstation

	[image: [Warning]]	
	This event tracks only manual logoffs. Other causes of
 disconnection (e.g.. the user closes his browser, session timeouts,
 etc) are not tracked. Therefore you cannot count on having a logoff
 event for each logon event.

F.1.3. Action: user logon - unsuccessful

	
Action-id: 1003

	
Text1: The full login, as a string, of the user that tried to log on

	
Text2: The IP address (dotted quad) of the user’s workstation

	
Text3: The error message displayed

F.1.4. Action: password change

	
Action-id: 1004

	
Text1: The full login, as a string, of the user logging on

	
Text2: The IP address (dotted quad) of the user’s workstation

F.2. Action class: Key management (11XX)

F.2.1. Action: key changed

	
Action-id: 1101

	
Text1: The full login, as a string, of the user logging on

	
Text2: The IP address (dotted quad) of the user’s workstation

	
Text3: The new key that was installed

F.2.2. Action: key accessed via XML-RPC

	
Action-id: 1102

	
Text1: The full login, as a string, of the user logging on

	
Text2: The IP address (dotted quad) of the user’s workstation

	
Text3: The key that was passed (it may be blank if it was just a query)

F.2.3. Action: AGAW key changed

	
Action-id: 1103

	
Text1: The full login, as a string, of the user logged on

	
Text2: The IP address (dotted quad) of the user’s workstation

	
Text3: The new key that was installed

F.2.4. Action: AGAW key accessed via XML-RPC

	
Action-id: 1104

	
Text1: The full login, as a string, of the user logging on

	
Text2: The IP address (dotted quad) of the user’s workstation

	
Text3: The key that was passed (it may be blank if it was just a query)

F.2.5. Action: AGAW restarted

This action is logged only when the AGAW runner is restarted from the web GUI.
	
Action-id: 1105

	
Text1: The full login, as a string, of the user logging on

	
Text2: The IP address (dotted quad) of the user’s workstation

F.3. Action class: QueueLog editing (20XX)

F.3.1. Action: QueueLog edited

	
Action-id: 2001

	
Text1: The full login, as a string, of the user logging on

	
Text2: The IP address (dotted quad) of the user’s workstation

	
Text3: The new statement

	
Text4: The SQL rollback statement.

This event is triggered by a change to the queue_log made by the Payroll
module. A rollback SQL statement is supplied in case it is needed to revert
the changes.

F.4. Action class: QA editing (21XX)

F.4.1. Action: QA form deleted

	
Action-id: 2101

	
Text1: The full login, as a string, of the user logging on

	
Text2: The IP address (dotted quad) of the user’s workstation

	
Text3: The rollback SQL statement

F.4.2. Action: Deletion of a comment

	
Action-id: 2102

	
Text1: The full login, as a string, of the user logging on

	
Text2: The IP address (dotted quad) of the user’s workstation

	
Text3: Which comment was deleted

F.4.3. Action: Deletion of all comments

	
Action-id: 2103

	
Text1: The full login, as a string, of the user logging on

	
Text2: The IP address (dotted quad) of the user’s workstation

	
Text3: Which call was involved

F.5. Action class: Realtime agent management (23XX)

F.5.1. Action: Realtime Agent Logon

	
Action-id: 2301

	
Text1: The full login, as a string, of the user logging on

	
Text2: The IP address (dotted quad) of the user’s workstation

	
Text3: AgentCode: XXX AgentExtension: XXX

F.5.2. Action: Realtime Agent Logoff

	
Action-id: 2302

	
Text1: The full login, as a string, of the user logging on

	
Text2: The IP address (dotted quad) of the user’s workstation

	
Text3: AgentCode: XXX AgentExtension: XXX

F.5.3. Action: Realtime Agent Pause

	
Action-id: 2303

	
Text1: The full login, as a string, of the user logging on

	
Text2: The IP address (dotted quad) of the user’s workstation

	
Text3: AgentCode: XXX AgentExtension: XXX

F.5.4. Action: Realtime Agent Unpause

	
Action-id: 2304

	
Text1: The full login, as a string, of the user logging on

	
Text2: The IP address (dotted quad) of the user’s workstation

	
Text3: AgentCode: XXX AgentExtension: XXX

F.5.5. Action: Realtime Agent SMS

	
Action-id: 2305

	
Text1: The full login, as a string, of the user logging on

	
Text2: The IP address (dotted quad) of the user’s workstation

	
Text3: AgentCode: XXX AgentExtension: XXX

F.6. Action class: Realtime call management (24XX)

F.6.1. Action: Call soft hangup

	
Action-id: 2401

	
Text1: The full login, as a string, of the user logging on

	
Text2: The IP address (dotted quad) of the user’s workstation

	
Text3: AgentCode: XXX AgentExtension: XXX UniqueID: XXXXXXXXXX

F.6.2. Action: Call transfer

	
Action-id: 2402

	
Text1: The full login, as a string, of the user logging on

	
Text2: The IP address (dotted quad) of the user’s workstation

	
Text3: AgentCode: XXX AgentExtension: XXX UniqueID: XXXXXXXXXX

F.6.3. Action: Call closure

	
Action-id: 2403

	
Text1: The full login, as a string, of the user logging on

	
Text2: The IP address (dotted quad) of the user’s workstation

	
Text3: UniqueID: XXXXXXXXXX

Appendix G. Glossary

AGAW: The Agent Awareness subsystem of QueueMetrics.
ARA: The Asterisk Realtime Architecture.
Agent: a person working at the monitored call center
and answering to calls. Asterisk offers a way for agents not to be bound by
physical telephone terminals but to log on to tell the system they are
available.
Aggregate queue: see → Composite queue.
Atomic queue: a queue that matches one-to-one to an
underlying Asterisk queue.
Call analyst: a person whose job is to grade
 agent’s calls through the QA system. This may be a specific
 job or an agent.
Call-back agent: an agent that will not stay on-line, but which
telephone will be rung by Asterisk when a call comes in for him.
Caller: a person calling the Asterisk system
Call-file: a function in Asterisk, where by writing a
specially-crafted file, it is possible to interact with the dial-plan. With a
modern version of Asterisk, it is generally better to use the Manager interface.
Campaign: a set of outbound calls placed for a given purpouse.
Composite queue: A virtual queue made of more than one atomic
queue. Useful for reporting all center activity at once.
DNIS (Dialed Number Identification Service) is a service that tracks which telephone
number was dialed by a customer (e.g in case of multiple incoming numbers).
Engagement code: an acronym that represents a grading items
for the QA forms.
Grader: see → Call Analyst.
Invisible queue: a queue that is defined in QueueMetrics but
cannot be chosen from the front page. Useful for queue → wildcard matching.
IVR (Interactive voice response) is a dialog system that allows Asterisk
to detect keypad inputs and address the caller to the correct queue or
department.
Jabber: see → XMPP.
Manager interface: a TCP/IP Asterisk interface, where a process
with the right credentials can connect to a remote Asterisk server over the
network and control or query its behaviour. Must be enabled manually by the
Asterisk administrator.
Monitoring: in Asterisk terminology, the act of recording to disk.
Outbound queue: see → Campaign.
Queue: the call distribution object that let
Asterisk keep callers waiting and distributes them in the correct order to
available agents. Each caller is processed on a first-come-first-server basis.
Subqueue: an artifact of QueueMetrics qloaderd that lets you see different
calls processed by the same physical Asterisk queue "as if" they were processed
on multiple subqueues. Often used e.g. to tag calls to clients or products
without creating hundreds of physical queues in Asterisk.
VNC: a technology that can display the screen of another computer on
your own screen through a TCP/IP connection. A number of free and commercial
VNC implementations exist.
Wildcard matching: a technique to group together all queues that
have a name sharing similar characteristics.
See Section 21.3.2, “Using wildcards in queue names” for details.
XMPP (eXtensible Messaging and Presence Protocol): An open
instant messaging protocol. Used for off-band communication in the AGAW
subsystem.

OEBPS/images/icons/callouts/5.png

OEBPS/images/icons/callouts/4.png

OEBPS/images/icons/callouts/7.png

OEBPS/images/icons/callouts/6.png

OEBPS/images/icons/callouts/1.png

OEBPS/images/icons/callouts/3.png

OEBPS/images/icons/callouts/2.png

OEBPS/images/icons/callouts/10.png

OEBPS/images/icons/callouts/9.png

OEBPS/images/icons/callouts/8.png

OEBPS/images/icons/note.png

OEBPS/images/icons/warning.png

OEBPS/images/icons/tip.png

OEBPS/images/icons/caution.png

OEBPS/images/icons/important.png

